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Abstract—Eye-tracking technology has rapidly gained 

popularity as a revolutionary solution for individuals with severe 

physical disabilities, empowering them to engage in their daily 

activities with newfound independence and efficiency. By utilizing 

advanced eye-tracking systems, individuals with limited mobility 

are able to control various devices and interfaces simply by 

moving their eyes. This paper utilizes deep learning techniques to 

create a low-cost real-time eye-tracking interface for controlling 

systems. A smart wheelchair and a robotic arm have been 

developed to design an eye-tracker, aiming to address the 

challenges faced by paralyzed people with severe physical 

limitations. The results demonstrate that eye-tracking is both fast 

and accurate, making it an effective tool for improving the 

interactions and accessibility for disabled individuals. 
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I. INTRODUCTION  

In today's world, a significant portion of the population faces 
physical disabilities and limitations, either from birth or as a 
result of accidents. These individuals experience physical 
impairments that necessitate assistance even for simple 
everyday activities. For example, individuals with paralysis or 
motor disabilities often resort to using long sticks held in their 
mouths to type. Unfortunately, this reliance on such tools can 
lead to long-term emotional challenges, including feelings of 
depression. To address the daily difficulties associated with 
physical impairments, robotic arms and wheelchairs have 
emerged as two important solutions [1]. Individuals who are 
elderly or have disabilities often rely on manual or electric 
powered wheelchairs (EPW) as a permanent means of 
transportation [2]. While manual wheelchairs require assistance 
from others, electric wheelchairs offer various control options 
such as joysticks, touchscreens, voice commands, or other 
technologies [3]. 

Nevertheless, these wheelchairs may not always provide 
optimal comfort and effectiveness, particularly for people with 
severe movement disorders resulting from spinal cord injuries, 
strokes, or neurological deficits. Everyday activities can pose 
challenges for wheelchair users [4]. Moreover, research 
conducted on quadriplegic patients has revealed that 10% of 
users encounter significant difficulties when operating a 
traditional electric wheelchair with a joystick. For the paralyzed 

folk, unable to move their bodies or communicate verbally, the 
eyes may be their only means of performing actions [5]. 
Therefore, one potential solution is to employ eye-tracking 
methods for these people. Consequently, this study focuses on 
the development of a gaze-controlled robotic arm and a smart 
wheelchair to assist impaired individuals in writing and mobility 
tasks. 

In [6], various image processing methods for eye-tracking 
are reviewed. Additionally, real-time gaze tracking and blink 
detection provide essential insights into human behavior and 
attention, making them valuable for psychophysics studies and 
neuromarketing applications [7]. 

Eye trackers are typically designed to monitor eye 
movements while also capturing head movements. They 
incorporate software algorithms for data collection and analysis 
[8]. In comparison to conventional input devices like joysticks 
and voice recognition, the eye-tracking approach is particularly 
beneficial for patients with different types of neuromuscular 
diseases or neurological disorders including spinal cord injuries, 
cerebral palsy, and other conditions that impair movement [9]. 
One viable solution for eye-tracking involves glasses equipped 
with close-up cameras. Although these methods are accurate and 
reliable, they can be expensive due to the specialized hardware 
required for processing infrared camera images. 

In recent decades, machine and deep learning methods have 
been widely applied, with adaptive models learning specific 
tasks by extracting information from previous data [10]. These 
modern methods are commonly used for eye gaze point 
detection. For instance, a camera-based eye tracker is proposed 
in [11] to control the computer cursor, where the user's head 
position is fixed, and the camera scans the user's eye, processing 
the data using a neural network. Another tracking algorithm in 
[12] utilizes Yolo (v3) for detection, while [13] designs a 
Convolutional Neural Network (CNN) for eye tracking with an 
infrared LED. [14] presents an algorithm trained on in-the-wild 
datasets for real-time blink detection in videos using facial 
landmarks. In [15], gaze point in videos is estimated through a 
feed-forward Artificial Neural Network (ANN) without the need 
for facial detection. Similarly, [16] generates, segments, and 
reconstructs eye-tracking data with CNN models. [17] controls 
an iPhone by tracking eye movements with ResNet10. The gaze 
of a robot is also studied in [18]. 



These advanced methods have demonstrated satisfactory 
outcomes in tracking eye movements. However, they often 
require the individual to maintain a still head position or utilize 
glasses and LED devices, which can be inconvenient for people 
with disabilities. Moreover, precise calibration is typically 
necessary for each person, and there are safety concerns related 
to the use of infrared LED technology. On the other hand, 
existing intelligent eye tracking systems only focus on tracking 
eye movements, which may result in lower accuracy. However, 
incorporating a graphical user interface (GUI) can enhance 
accuracy and improve comfort. Therefore, this paper aims to 
develop a system that utilizes a standard laptop webcam for eye 
tracking, enabling control of a robotic arm and wheelchair 
through a GUI. This empowers individuals with significant 
physical disabilities, particularly those with limited control over 
their hands, with a means to achieve independence. The system 
serves as a supportive tool for writing and offers a sustainable 
solution for wheelchair control. 

For the robotic arm, the user selects a letter from an on-
screen keyboard with a blink of an eye, and the robot writes the 
desired letter on paper with programmed accuracy. Additionally, 
a smart wheelchair is developed and controlled using eye blinks 
on the eye-tracking interface (forward, backward, right, left, 
stop). The wheelchair is equipped with ultrasonic sensors to 
detect obstacles and halt movement, ensuring user safety. Our 
proposed systems are efficient, suitable, and cost-effective for 
individuals with severe disabilities, thanks to the ease and 
convenience of eye-tracking. The remainder of this paper 
discusses eye-tracking algorithms, the robotic arm, and smart 
wheelchair algorithms, the training dataset, programming 
environment, and evaluation metrics in the methodology 
section, concluding with the reported results from the systems. 

II. METHODOLOGY  

A. Eye-Tracking Algorithm 

The eye-tracking system developed in this study is created 
and executed in Jupyter Notebook, using the Python 
programming language. The employed Python libraries are 
outlined in Table I. 

TABLE I.     Python libraries used in the eye-tracking system 
 

Library Function 

Open-CV Eye-tracking webcam 

Dlib Face detection model 

Pyautogui Mouse control 

Numpy Array and parameter definition  

Math Mathematical computation 

Time Tracking time 
 

Overall, the system is constituted of two main sections: A 
deep learning model for eye detection and mouse cursor control. 
Dlib is a prominent and open-source C++ model which can be 
used for computer vision tasks. It offers a pre-trained deep 
learning which can be used for facial landmark detection. The 
method involves assigning points to various landmarks on the 
human face, which are then detected by a neural network with 
corresponding probabilities for each prediction. In our research, 
we trained the 68 points Dlib model as illustrated in Fig. 1. 

The proposed system tracks the human eye by comparing the 
predictions from the Dlib model with specific thresholds. To 
accomplish this, certain image processing steps are required, 
which will be discussed subsequently. 

 
Fig. 1. Dlib model points for face detection with 68 points 

Within the Dlib model, numbers 36 to 47 are specifically 
assigned to represent the human eyes (with 6 points allocated to 
each eye, denoted as 𝑝1  to 𝑝6 ). From these 6 points, the 
minimum and maximum values along the x and y axes are 
identified from Equations (1) to (4), resulting in the coordinates 
of the eye region. 

𝑥1 = min(𝑥(𝑝1), 𝑥(𝑝2), 𝑥(𝑝3), 𝑥(𝑝4), 𝑥(𝑝5), 𝑥(𝑝6))  (1) 

𝑥2 = max(𝑥(𝑝1), 𝑥(𝑝2), 𝑥(𝑝3), 𝑥(𝑝4), 𝑥(𝑝5), 𝑥(𝑝6))  (2) 

𝑦1 = min(𝑦(𝑝1), 𝑦(𝑝2), 𝑦(𝑝3), 𝑦(𝑝4), 𝑦(𝑝5), 𝑦(𝑝6))  (3) 

𝑦2 = max(𝑦(𝑝1), 𝑦(𝑝2), 𝑦(𝑝3), 𝑦(𝑝4), 𝑦(𝑝5), 𝑦(𝑝6))     (4) 

In order to differentiate between the iris and the cornea and 
accurately identify the user's point of view, the eye region is 
processed. Initially, the specified eye region is converted into a 
gray-scale image. Then, each pixel in the image is standardized 
by comparing it with a specific constant value. Based on this 
comparison, the pixel's value is adjusted to either the minimum 
possible value (0) or the maximum possible value (255) 
(Equation (5)). This process results in the division of the eye 
region into two distinct partitions, representing the iris and the 
cornea, respectively as demonstrated in Fig. 2. 

Pixel Standardazation {
𝑣 = 0            𝑣 < 70
𝑣 = 255       𝑣 ≥ 70

  (5) 

 

                        Fig. 2. a) eye region b) standardized eye region 

To detect horizontal eye movements, the eye region is 
divided into two equal parts, 𝑥0𝑥2 and 𝑥1𝑥0, using a vertical line 
segment (depicted in Fig. 3 (a)). In each section, the number of 
non-zero pixels is calculated separately for the left side (𝐿) and 
the right side (𝑅). Based on the proportion of  𝐿 and 𝑅, the user's 
eye point of view (left, right, or center) is predicted using 
Algorithm 1. 



Similarly, for vertical eye movements, the screen is divided 
into two equal parts, 𝑦0𝑦2  and 𝑦1𝑦0 , using a horizontal line 
segment. The number of non-zero pixels in each section is 
counted for the top (𝑈) and bottom (𝐷) regions. Based on these 
measurements, the eye movement is classified as up, down, or 
center. Additionally, our eye-tracking model takes into account 
the average ratio derived from both the left and right eyes to 
enhance the accuracy of tracking. 

Algorithm1: Eye Movements 
 

Horizontal Movements 

 
Step1 Divide the cascade into equal regions 𝒙𝟎𝒙𝟐 (right) and 𝒙𝟏𝒙𝟎 (left) 

Step2 Estimate the values of 𝑳 and 𝑹 

Step3 Find the ratio of 𝑳 to 𝑹 

Step4 Calculate the average ratio of both eyes as Equation (6) 

𝑳𝑹 =

𝑳
𝑹𝑅𝑖𝑔ℎ𝑡 𝐸𝑦𝑒

+
𝑳
𝑹𝐿𝑒𝑓𝑡 𝐸𝑦𝑒

2
 

(6) 

Step5 Compare 𝑳𝑹 with defined thresholds as: {
𝑹𝒊𝒈𝒉𝒕               𝑳𝑹 ≤ 𝟎. 𝟖
𝑪𝒆𝒏𝒕𝒆𝒓     𝟎. 𝟖 < 𝑳𝑹 ≤ 𝟏
𝑳𝒆𝒇𝒕                     𝟏 < 𝑳𝑹

 

Vertical Movements 

Step1 Divide the cascade into equal regions 𝒚𝟎𝒚𝟐 (up) and 𝒚𝟏𝒚𝟎 (down) 

Step2 Estimate the values of 𝑼 and 𝑫 

Step3 Find the ratio of 𝑼 to 𝑫 

Step4 Calculate the average ratio of both eyes as Equation (7) 

𝑼𝑫 =

𝑼
𝑫𝑅𝑖𝑔ℎ𝑡 𝐸𝑦𝑒

+
𝑼
𝑫𝐿𝑒𝑓𝑡 𝐸𝑦𝑒

2
 

(7) 

Step5 Compare 𝑼𝑫 with defined thresholds as: {
𝑼𝒑                         𝑼𝑫 ≤ 𝟒. 𝟑

𝑪𝒆𝒏𝒕𝒆𝒓     𝟒. 𝟑 < 𝑼𝑫 ≤ 𝟒. 𝟕
𝑫𝒐𝒘𝒏                   𝟒. 𝟕 < 𝑼𝑫

 

 

 

                     Fig. 3. a) eye points (normal) b) eye points (blinked) 
The next step is to detect the blinking mode of the user. To 

do so, we consider a hypothetical horizontal line that is equal to 
the longitudinal distance of the eye, represented by points 
𝑝1 to 𝑝4 (depicted in Fig. 3 (b)). Subsequently, the coordinates 
of the middle points between 𝑝2 and  𝑝3 , as well as between 
𝑝5 and  𝑝6 , are determined using Equation (8), where 𝑖  and 𝑗 
represent the point indexes. These two obtained points are then 
connected with a vertical line that has the same width as the eye's 
width. It is important to note that the horizontal line remains 
constant in all cases, whereas the vertical line varies with 
blinking. Finally, the ratio of the vertical line to the horizontal 
line is calculated. By comparing this ratio with specific 
thresholds, it is determined whether the user is in a blinking, 
scrolling or normal mode. 

𝑝𝑖,𝑗𝑚𝑖𝑛
= (

𝑥(𝑝𝑖) + 𝑥(𝑝𝑗)

2
,
𝑦(𝑝𝑖) + 𝑦(𝑝𝑗)

2
)  (8) 

Algorithm2: Blink Detection 
Step1 Draw 𝒑𝟏𝒑𝟒 

Step2 Find 𝒑𝟐𝒑𝟑𝒎𝒊𝒏
and 𝒑𝟓𝒑𝟔𝒎𝒊𝒏

 as Equation (8) 

Step3 Connect 𝒑𝟐𝒑𝟑𝒎𝒊𝒏
to 𝒑𝟓𝒑𝟔𝒎𝒊𝒏

 

Step4 Compute the ratio of 𝒑𝟐𝒑𝟑𝒎𝒊𝒏
𝒑𝟓𝒑𝟔𝒎𝒊𝒏

 to 𝒑𝟏𝒑𝟒 

Step5 Calculate the average ratio of both eyes as Equation (9) 

𝑩 =

𝒑𝟐𝒑𝟑𝒎𝒊𝒏
𝒑𝟓𝒑𝟔𝒎𝒊𝒏

𝒑𝟏𝒑𝟒 𝑅𝑖𝑔ℎ𝑡 𝐸𝑦𝑒

+
𝒑𝟐𝒑𝟑𝒎𝒊𝒏

𝒑𝟓𝒑𝟔𝒎𝒊𝒏

𝒑𝟏𝒑𝟒 𝐿𝑒𝑓𝑡 𝐸𝑦𝑒

2
 

(9) 

Step6 Compare 𝑩 with defined thresholds as: {
𝑩𝒍𝒊𝒏𝒌                        𝑩 < 𝟎. 𝟐
𝑺𝒄𝒓𝒐𝒍𝒍           𝟎. 𝟐 ≤ 𝑩 ≤ 𝟎. 𝟑
𝑵𝒐𝒓𝒎𝒂𝒍                   𝟎. 𝟑 < 𝑩

 

 

TABLE II.     Cursor Status based on the predicted eye direction 
 

Eye Direction Cursor Status 

Right 20mm in the positive direction of  x-axis 

Left 20mm in the negative direction of  x-axis 

Up 7mm in the positive direction of  y-axis 

Down 7mm in the negative direction of  y-axis 

Center No Change 

 

TABLE III.     Cursor Status based on the predicted blink direction 
 

Blink Detection Cursor Status 

Right Right Click 

Left Left Click 

Scroll + Looking Up 40mm scroll in the positive direction of  y-axis 

Scroll + Looking 

Down 
40mm scroll in the negative direction of  y-axis 

 

Table II and III provide an overview of the cursor's status 
based on eye movement and blinking, respectively. 
Additionally, the variations of these parameters over a three-
minute tracking period are depicted in Fig. 4, 5 and 6. The results 
show that each parameter associated with eye movements (up, 
down, right, left and center) fluctuates as the user shifts their 
gaze. By comparing these parameter values to specific 
thresholds, the cursor's position is determined at any given 
moment. 

 

Fig. 4. Vertical movement parameters over time (minute) 

 

Fig. 5. Horizontal movement parameters over time (minute) 



 

Fig. 6. Blink parameters over time (minute) 

Lastly, the eye-tracking environment is illustrated in Fig. 7. 
The detected face and eyes are highlighted with boxes. 
Additionally, the two vertical and horizontal lines that have been 
calculated are visible. In addition, the vertical eye position (up, 
down, center) and horizontal eye position (right, left, center) is 
stated in left and right side of the screen respectively. 
Furthermore, blink and scroll status is shown in the center. 

 
Fig. 7. Eye-tracking environment 

B. Robatic Arm 

The parallel robot arm used in this study (Fig. 10) has three 
degrees of freedom and is equipped by three SG90 servo motors 
plus an Arduino UNO board. It consists of 26 different pieces 
that are assembled using screws. The electrical components used 
to design the robot arm are listed below and can be seen in Fig. 
8. 

• Arduino UNO 
• Bread Board 
• Three SG90 servo motors 
• +5 Volt voltage source 
• Jumper Wire  

 
Fig. 8. Schematic of the electronic elements used in the Robotic Arm 

The majority of letters in the Latin alphabet can be broken 

down into two main components: straight lines and curves. 

Therefore, to simplify the writing process for the robot, each 

letter is converted into a combination of vertical and horizontal 

lines [19]. For example, the letter C is represented as shown in 

Fig. 9. 

       
Fig. 9. A simple version of the letter with vertical and horizontal lines 

 

Inverse kinematics is utilized to position the servo motors 

accurately and enable the robot to write the desired letter. In 

direct kinematics, the coordinates of the robot arm's end are 

determined based on the positions (angles) of the actuators 

(servo motors). Nevertheless, in inverse kinematics, the process 

is reversed: the actuators are positioned based on the input 

coordinates of the arm's end. This operation is essential for 

various robotic tasks such as moving a tool along a specific 

path, relocating objects, or obtaining a specific viewpoint. 

Inverse kinematics has been extensively studied, and multiple 

techniques have been developed to solve it. 
 

In the next step, the dimensions of the arm are measured. 

The exact angles of the servo motors for each letter are then 

determined based on the inverse kinematics of the robot. After 

transforming all the letters into lines and obtaining the 

coordinates of the robot arm's pen tip (𝑝
𝑥
, 𝑝

𝑦
, 𝑝

𝑧
), as well as the 

start and end points of each line, these values are used as input 

for the inverse kinematics calculation. This process yields the 

required angles for writing each letter. Finally, the Arduino 

board is programmed using the calculated angles to actuate the 

servo motors and enable the robot to write the letters. 

 
Fig. 10. The final robotic arm 

 

The corresponding parameters for each servo motor are 

presented in Table IV and demonstrated in Fig. 11, 12, and 13. 

The angles 𝑞
1
, 𝑞

2
 and 𝑞

3
 represent the angles of the middle, 

right, and left servo motors, respectively. Additionally, 

Equations (10) to (22) describe the equations associated with 

the dynamics of the robot. 



TABLE IV.     Robot Arm Parameters 
 

Parameter Definition 

𝑋 x axis 

𝑌 y axis 

𝑍 z axis 

𝑙0 
distance between the center of the coordinate and the 

center of the robotic arm 

𝑙1 distance between the center of the robotic arm and l3 

𝑙2 length of the front piece of the arm 

𝑙3,0 upper distance between 𝑙2 and 𝑙4 

𝑙3,1 lower distance between 𝑙2 and 𝑙4 

𝑙4 length of the back piece of the arm 

𝑞1 
anticlockwise angle between y-axis and the arm 

(the angle of the middle servomotor) 

𝑞2 
anticlockwise angle between x-axis and 𝑙2  

(the angle of the right servomotor) 

𝑞3 
anticlockwise angle between z-axis and 𝑙3,1  

(the angle of the left servomotor) 

𝑞3,0 anticlockwise angle between 𝑙2 axis and the arm 

𝛼 angle between 𝑠 and 𝑟 

𝛽 angle between 𝑙2 and 𝑠 

𝛾 angle between 𝑙2 and 𝑙3 

𝜑 angle between 𝑙3,1 and 𝑒 

Ψ angle between 𝑙2 and 𝑒 

𝑑5 distance between the center of the robot and the pen 

𝑒 diagonal distance between 𝑙2 and 𝑙4 

𝑠 
distance between the center of the servo motor and 

center of the pen 

𝑟 
horizontal distance between the center of the servo motor 

and center of the pen 

𝑧 
vertical distance between the center of the pen and  the 

center of the servo motor 

ℎ 
distance between the center of the servo motor and the 

ground 

 

𝑞1 = tan−1
𝑝𝑥 − 𝑙0

𝑝𝑥
+ sin−1

𝑑5

√(𝑝𝑥 − 𝑙0)2 + 𝑝𝑦
2

) 
 (10) 

𝑞2 = 𝜋 − 𝛼 − 𝛽  (11) 

𝑞3 = Ψ + 𝜑 +
𝜋

2
− 𝑞2  (12) 

𝑞3,0 = 𝜋 − 𝛾 (13) 

𝛼 = tan−1
𝑧

𝑟
  (14) 

𝛽 = cos−1(
𝑙2

2 − 𝑙3
2 + 𝑠2

2𝑠𝑙2
) 

 (15) 

𝛾 = cos−1(
𝑙2

2 + 𝑙3
2 − 𝑠2

2𝑙2𝑙3
) 

 (16) 

𝑠 = √𝑟2 + 𝑧2  (17) 

𝑟 = √𝑝𝑥
2 + 𝑝𝑦

2 − 𝑙1 
 (18) 

𝑒 = √𝑙3,0
2 + 𝑙2

2 − 2𝑙3,0𝑙2cos (𝑞3,0) 
(19) 

Ψ = sin−1(
𝑙3,0sin (𝑞3,0)

𝑒
) 

(20) 

𝜑 = cos−1(
𝑒2 + 𝑙3,1

2 − 𝑙4
2

2𝑒𝑙3,1
) 

(21) 

𝑧 = 𝑝𝑧 − ℎ (22) 

 
Fig. 11. Robotic arm parameters (1) 

 
Fig. 12. Robotic arm parameters (2) 

 
Fig. 13. Robotic arm parameters (3) 

To establish a connection between the robot and the eye-

tracking system, a Graphical User Interface is created using the 

Processing IDE, as shown in Fig. 14. The program 

communicates with the Arduino through serial communication. 

The user is able to control the cursor using eye movements and 

select a letter by blinking. When a key is pressed, a 

corresponding sound is played, enhancing the user's 

understanding and interaction with the system. Finally, some 

words are printed out in order to evaluate the handwriting of the 

robot. The word ‘CONTROL’ in Fig. 15 is an example. 

 

 
 

Fig. 14. GUI for the robotic arm 



 
 

Fig 15. Writing the word ‘CONTROL’ with the robotic arm 

C. Smart Wheelchair 

This section highlights the development of the eye-tracking-
based smart wheelchair intended for individuals with mobility 
impairments. The smart wheelchair is equipped with various 
components, including Arduino UNO, Driver L298N, Bluetooth 
06HC, Two DC Motors, and an Ultrasonic Sensor, as depicted 
in Fig. 16. 

 
 

Fig. 16. Electronic elements used in smart wheelchair   

 

The image processing section of the system involves a built-
in webcam on a laptop and custom image processing software 
developed in Python. Open-CV is utilized to determine the 
direction of eye movements based on captured images. The user 
interacts with the system through a user interface displayed on 
the computer, which sends commands to the Arduino via 
Bluetooth. The Bluetooth module receives these command 
signals at the receiving end and finally Arduino controls the 
motors accordingly. 

In the wheelchair's warning module, ultrasonic sensors are 
employed to detect objects in front of the wheelchair by emitting 
and receiving sound waves. The Arduino processes the data to 
calculate the distances to obstacles. If an obstacle is detected, the 
Arduino sends a stop command, and the motors halt. 

The L298 driver, in conjunction with the Arduino, allows for 
the control of the speed and direction of the DC motor using 
pulse width modulation and an H bridge. Pulse width 
modulation adjusts the average input voltage by generating a 
sequence of on and off pulses. The duty cycle, which determines 
the width of the pulses, affects the average voltage applied to the 
DC motor. A higher duty cycle results in a higher average 
voltage and, consequently, a higher speed, while a lower duty 
cycle leads to a lower average voltage and a lower speed. The 
rotation direction of the DC motor can be controlled by changing 
the polarity of its input voltage, typically achieved using an H 
bridge. The H bridge circuit consists of four switches arranged 
in the shape of the letter "H," with the motor in the center. By 
closing specific switches simultaneously, the polarity of the 
voltage applied to the motor is reversed, causing it to rotate in 
the opposite direction. 

The designed graphical interface is illustrated in Fig. 17. 
Serial communication is employed between the program and the 
Arduino, with data being transferred via Bluetooth and the speed 

of communication between the computer and the Bluetooth 
module must be set accurately to ensure proper serial 
communication.  The user controls the smart wheelchair (Fig. 
18) by sending one movement command as in Table V from the 
GUI to the Arduino. 

 
 

Fig. 17. GUI for wheelchair  

 
 

Fig. 18. Smart Wheelchair overview  

 
TABLE V.     Direct Current Motor Status 

 

Direction IN1 IN2 IN3 IN4 

Stop 0 0 0 0 

Forward 1 0 1 0 

Backward 0 1 0 1 

Right 1 0 0 1 

Left 0 1 1 0 

III. EVALUATION 

In order to assess the effectiveness of the eye tracking GUI, 

a step function is defined and tracked, as depicted in Fig. 19. 

The axes represent the dimensions of the laptop screen 

(1920*1080). It can be observed that the vertical movements 

exhibit slightly higher accuracy, while the horizontal 

movements show some level of noise. 
 

 
Fig. 19. Eye Tracking Evaluation 



Moreover, the Mean Square Error (MSE) and Root Mean 

Square Error (RMSE) is utilized for quantitative evaluation of 

the system. Equation (23) and (24) represents the formula for 

MSE and RMSE, where 𝑞 and 𝑞𝑑  indicate the tracked and 

reference path values for the 𝑖𝑡ℎ data point, respectively, and 𝑁 

denotes the number of samples. Table VI demonstrates the 

MSE values for both vertical and horizontal directions, 

indicating that the system performs better in terms of vertical 

movements. 

 

MSE =
1

𝑁
 ∑ (𝑞(𝑖) − 𝑞𝑑(𝑖))2

𝑖∈data

  (23) 

RMSE = √
1

𝑁
 ∑ (𝑞(𝑖) − 𝑞𝑑(𝑖))2

𝑖∈data

  (24) 

  

TABLE VI.     MSE and RMSE for vertical and horizontal tracking  
 

Movement Direction MSE RMSE 

Vertical 0.168 0.410 

Horizontal 0.254 0.504 

Total 0.333 0.577 

IV. DISCUSSION 

This study has successfully developed an eye-tracking-based 
automatic wheelchair control system, providing individuals with 
physical disabilities the ability to control the wheelchair through 
eye movements only by looking at a screen. To ensure safety, 
ultrasonic sensors are integrated into the wheelchair, enabling 
immediate stops when obstacles are detected. This gaze-
controlled wheelchair not only offers easy accessibility for the 
disabled people but also enhances safety by providing automatic 
obstacle protection. Additionally, the study has also achieved 
the capability of writing using a robot arm. This advancement is 
expected to be well-received, as it allows the folk with severe 
physical and mobility limitations to create content without 
requiring human assistant. However, our system's tracking 
accuracy is impacted by the lighting conditions in the 
environment. To improve the performance in future works, the 
following suggestions are proposed. 

 Employing a higher-resolution camera to improve tracking 
accuracy. 

 Utilizing servo motors with higher torque for accurate 
positioning of the robot arm at higher locations. 

 Developing a robot arm with stronger and more stable 
hardware that is lightweight and easy to reposition. 

 Incorporating servo motors with a high weight tolerance. 

 Implementing a system where the paper continually moves on 
a rail, enabling the robot to write all the letters in one location 
without the need for arm extension. 

V. CONCLUSION 

This paper focuses on implementing an eye-tracking based 

method using a robotic arm and a wheelchair to assist 

individuals with severe disabilities in their daily activities. Both 

the robotic arm and smart wheelchair are connected to the eye-

tracking system through a graphic user interface on a local 

computer. The results indicate satisfactory performance in 

terms of both speed and accuracy. In future work, there is 

potential for improving the hardware components. 

Additionally, since eye trackers are not widely utilized by the 

general public, further research in this field can serve as a 

foundation for conducting applied research in related areas. 

ACKNOWLEDGMENT 

This research received no external funding. 

AUTHOR CONTRIBUTION 

The authors contributed equally on this paper and the last author 

supervised this study. 

REFERENCES 

[1] N. S. Zamani, M. N. Mohammed, M. I. Abdullah, and S. Al-Zubaidi, “A 

new developed technique for handwriting robot,” in 2019 IEEE International 
Conference on Automatic Control and Intelligent Systems (I2CACIS), 2019. 

[2] S. Mahmud et al., “A multi-modal human-machine interface for controlling 
a smart wheelchair,” in 2019 IEEE 7th Conference on Systems, Process, and 

Control (ICSPC), IEEE, 2019, pp. 10–13. 

[3] C. Aruna, A. D. Parameswari, M. Malini, and G. Gopu, “Voice recognition 

and touch screen control based wheel chair for paraplegic persons,” in 2014 

International Conference on Green Computing Communication and Electrical 
Engineering (ICGCCEE), 2014. 

[4] B. Gold, N. Morgan, and D. Ellis, “Speech and audio signal processing: 
processing and perception of speech and music,” John Wiley & Sons, 2011. 

[5] S. M. T. Saleem, S. Fareed, F. Bibi, A. Khan, S. Gohar, and H. H. Ashraf, 
“IMouse: eyes gesture control system,” International Journal of Advanced 

Computer Science and Applications, vol. 9, no. 9, 2018. 

[6] J. B. Mulligan, “Image processing for improved eye-tracking accuracy,” 

Behav. Res. Methods Instrum. Comput., vol. 29, no. 1, pp. 54–65, 1997. 

[7] B. Wąsikowska, “The application of eye tracking in business,” 2014. 

[8] A. Taghizade and Z. Aghakasiri, “Eye-Tracking Method’Usage for 
Understanding the Cognitive Processes in Multimedia Learning,” Journal of 

Educational Studies, vol. 11, pp. 41–52, 2018. 

[9] L. Scalera, S. Seriani, P. Gallina, M. Lentini and A. Gasparetto, “Human–

robot interaction through eye tracking for artistic drawing,” Robotics 10, no. 2, 

p. 54, 2021. 

[10] A. Namdari, M. A. Samani and T. S. Durrani, “Lithium-ion battery 

prognostics through reinforcement learning based on entropy 
measures,” Algorithms 15, no. 11, p. 393, 2022. 

[11] E. Demjén, V. Aboši, and Z. Tomori, “Eye tracking using artificial neural 
networks for human computer interaction,” Physiol. Res., vol. 60, no. 5, pp. 

841–844, 2011. 

[12] I. Rakhmatulin and A. T. Duchowski, “Deep neural networks for low-cost 

eye tracking,” Procedia Comput. Sci., vol. 176, pp. 685–694, 2020. [13] J. 

Griffin and A. Ramirez, “Convolutional neural networks for eye tracking 
algorithm,” arXiv Prepr. 2018. 

[14] T. Soukupova and J. Cech, “Eye blink detection using facial landmarks,” 
in 21st computer vision winter workshop, Rimske Toplice, Slovenia, 2016. 

[15] N. Zdarsky, S. Treue, and M. Esghaei, “A deep learning-based approach 
to video-based eye tracking for human psychophysics,” Front. Hum. Neurosci., 

vol. 15, p. 685830, 2021. 

[16] W. Fuhl, Y. Rong, and E. Kasneci, “Fully convolutional neural networks 

for raw eye tracking data segmentation, generation, and reconstruction,” in 
2020 25th International Conference on Pattern Recognition (ICPR), 2021. 

[17] H. D. Kannan, “Eye tracking for the iPhone using deep learning,” 
(Doctoral dissertation, Massachusetts Institute of Technology), 2017. 

[18] F. Manzi et al., “The understanding of congruent and incongruent 
referential gaze in 17-month-old infants: an eye-tracking study comparing 

human and robot,” Sci. Rep., vol. 10, no. 1, p. 11918, 2020. 

[19] S. Yussof, A. Anuar, and K. Fernandez, “Algorithm for robot writing using 

character segmentation,” in Third International Conference on Information 

Technology and Applications (ICITA’05), 2005. 


