
EasyChair Preprint
№ 12221

Eye-Tracking Based Control of a Robotic Arm and
Wheelchair for People with Severe Speech and
Motor Impairment (SSMI)

Maryam Asad Samani, Kiana Hooshanfar, Helia Shams Jey and
Seyed Majid Esmailzadeh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

February 20, 2024

Proceedings of the 11th RSI International Conference on Robotics and Mechatronics (ICRoM 2023), Dec. 19-21, 2023, Tehran, Iran

Eye-Tracking Based Control of a Robotic Arm and

Wheelchair for People with Severe Speech and Motor

Impairment (SSMI)

1st Maryam Asad Samani

dept. Electrical Engineering

Iran University of Science and

Technology

Tehran, Iran

asad_m@elec.iust.ac.ir

2nd Kiana Hooshanfar

dept. Electrical and Computer

Engineering

University of Tehran

Tehran, Iran

k.hooshanfar@ut.ac.ir

3rd Helia Shams Jey

dept. Electrical Engineering

Iran University of Science and

Technology

Tehran, Iran

helia_shams@elec.iust.ac.ir

4th Seyed Majid Esmailzadeh

dept. Electrical Engineering

Iran University of Science and

Technology

Tehran, Iran

smailzadeh@elec.iust.ac.ir

Abstract—Eye-tracking technology has rapidly gained

popularity as a revolutionary solution for individuals with severe

physical disabilities, empowering them to engage in their daily

activities with newfound independence and efficiency. By utilizing

advanced eye-tracking systems, individuals with limited mobility

are able to control various devices and interfaces simply by

moving their eyes. This paper utilizes deep learning techniques to

create a low-cost real-time eye-tracking interface for controlling

systems. A smart wheelchair and a robotic arm have been

developed to design an eye-tracker, aiming to address the

challenges faced by paralyzed people with severe physical

limitations. The results demonstrate that eye-tracking is both fast

and accurate, making it an effective tool for improving the

interactions and accessibility for disabled individuals.

Keywords—Eye-Tracking, Computer Vision, Deep Learning,

Control System, Robotic Arm, Smart Wheelchair

I. INTRODUCTION

In today's world, a significant portion of the population faces
physical disabilities and limitations, either from birth or as a
result of accidents. These individuals experience physical
impairments that necessitate assistance even for simple
everyday activities. For example, individuals with paralysis or
motor disabilities often resort to using long sticks held in their
mouths to type. Unfortunately, this reliance on such tools can
lead to long-term emotional challenges, including feelings of
depression. To address the daily difficulties associated with
physical impairments, robotic arms and wheelchairs have
emerged as two important solutions [1]. Individuals who are
elderly or have disabilities often rely on manual or electric
powered wheelchairs (EPW) as a permanent means of
transportation [2]. While manual wheelchairs require assistance
from others, electric wheelchairs offer various control options
such as joysticks, touchscreens, voice commands, or other
technologies [3].

Nevertheless, these wheelchairs may not always provide
optimal comfort and effectiveness, particularly for people with
severe movement disorders resulting from spinal cord injuries,
strokes, or neurological deficits. Everyday activities can pose
challenges for wheelchair users [4]. Moreover, research
conducted on quadriplegic patients has revealed that 10% of
users encounter significant difficulties when operating a
traditional electric wheelchair with a joystick. For the paralyzed

folk, unable to move their bodies or communicate verbally, the
eyes may be their only means of performing actions [5].
Therefore, one potential solution is to employ eye-tracking
methods for these people. Consequently, this study focuses on
the development of a gaze-controlled robotic arm and a smart
wheelchair to assist impaired individuals in writing and mobility
tasks.

In [6], various image processing methods for eye-tracking
are reviewed. Additionally, real-time gaze tracking and blink
detection provide essential insights into human behavior and
attention, making them valuable for psychophysics studies and
neuromarketing applications [7].

Eye trackers are typically designed to monitor eye
movements while also capturing head movements. They
incorporate software algorithms for data collection and analysis
[8]. In comparison to conventional input devices like joysticks
and voice recognition, the eye-tracking approach is particularly
beneficial for patients with different types of neuromuscular
diseases or neurological disorders including spinal cord injuries,
cerebral palsy, and other conditions that impair movement [9].
One viable solution for eye-tracking involves glasses equipped
with close-up cameras. Although these methods are accurate and
reliable, they can be expensive due to the specialized hardware
required for processing infrared camera images.

In recent decades, machine and deep learning methods have
been widely applied, with adaptive models learning specific
tasks by extracting information from previous data [10]. These
modern methods are commonly used for eye gaze point
detection. For instance, a camera-based eye tracker is proposed
in [11] to control the computer cursor, where the user's head
position is fixed, and the camera scans the user's eye, processing
the data using a neural network. Another tracking algorithm in
[12] utilizes Yolo (v3) for detection, while [13] designs a
Convolutional Neural Network (CNN) for eye tracking with an
infrared LED. [14] presents an algorithm trained on in-the-wild
datasets for real-time blink detection in videos using facial
landmarks. In [15], gaze point in videos is estimated through a
feed-forward Artificial Neural Network (ANN) without the need
for facial detection. Similarly, [16] generates, segments, and
reconstructs eye-tracking data with CNN models. [17] controls
an iPhone by tracking eye movements with ResNet10. The gaze
of a robot is also studied in [18].

These advanced methods have demonstrated satisfactory
outcomes in tracking eye movements. However, they often
require the individual to maintain a still head position or utilize
glasses and LED devices, which can be inconvenient for people
with disabilities. Moreover, precise calibration is typically
necessary for each person, and there are safety concerns related
to the use of infrared LED technology. On the other hand,
existing intelligent eye tracking systems only focus on tracking
eye movements, which may result in lower accuracy. However,
incorporating a graphical user interface (GUI) can enhance
accuracy and improve comfort. Therefore, this paper aims to
develop a system that utilizes a standard laptop webcam for eye
tracking, enabling control of a robotic arm and wheelchair
through a GUI. This empowers individuals with significant
physical disabilities, particularly those with limited control over
their hands, with a means to achieve independence. The system
serves as a supportive tool for writing and offers a sustainable
solution for wheelchair control.

For the robotic arm, the user selects a letter from an on-
screen keyboard with a blink of an eye, and the robot writes the
desired letter on paper with programmed accuracy. Additionally,
a smart wheelchair is developed and controlled using eye blinks
on the eye-tracking interface (forward, backward, right, left,
stop). The wheelchair is equipped with ultrasonic sensors to
detect obstacles and halt movement, ensuring user safety. Our
proposed systems are efficient, suitable, and cost-effective for
individuals with severe disabilities, thanks to the ease and
convenience of eye-tracking. The remainder of this paper
discusses eye-tracking algorithms, the robotic arm, and smart
wheelchair algorithms, the training dataset, programming
environment, and evaluation metrics in the methodology
section, concluding with the reported results from the systems.

II. METHODOLOGY

A. Eye-Tracking Algorithm

The eye-tracking system developed in this study is created
and executed in Jupyter Notebook, using the Python
programming language. The employed Python libraries are
outlined in Table I.

TABLE I. Python libraries used in the eye-tracking system

Library Function

Open-CV Eye-tracking webcam

Dlib Face detection model

Pyautogui Mouse control

Numpy Array and parameter definition

Math Mathematical computation

Time Tracking time

Overall, the system is constituted of two main sections: A
deep learning model for eye detection and mouse cursor control.
Dlib is a prominent and open-source C++ model which can be
used for computer vision tasks. It offers a pre-trained deep
learning which can be used for facial landmark detection. The
method involves assigning points to various landmarks on the
human face, which are then detected by a neural network with
corresponding probabilities for each prediction. In our research,
we trained the 68 points Dlib model as illustrated in Fig. 1.

The proposed system tracks the human eye by comparing the
predictions from the Dlib model with specific thresholds. To
accomplish this, certain image processing steps are required,
which will be discussed subsequently.

Fig. 1. Dlib model points for face detection with 68 points

Within the Dlib model, numbers 36 to 47 are specifically
assigned to represent the human eyes (with 6 points allocated to
each eye, denoted as 𝑝1 to 𝑝6). From these 6 points, the
minimum and maximum values along the x and y axes are
identified from Equations (1) to (4), resulting in the coordinates
of the eye region.

𝑥1 = min(𝑥(𝑝1), 𝑥(𝑝2), 𝑥(𝑝3), 𝑥(𝑝4), 𝑥(𝑝5), 𝑥(𝑝6)) (1)

𝑥2 = max(𝑥(𝑝1), 𝑥(𝑝2), 𝑥(𝑝3), 𝑥(𝑝4), 𝑥(𝑝5), 𝑥(𝑝6)) (2)

𝑦1 = min(𝑦(𝑝1), 𝑦(𝑝2), 𝑦(𝑝3), 𝑦(𝑝4), 𝑦(𝑝5), 𝑦(𝑝6)) (3)

𝑦2 = max(𝑦(𝑝1), 𝑦(𝑝2), 𝑦(𝑝3), 𝑦(𝑝4), 𝑦(𝑝5), 𝑦(𝑝6)) (4)

In order to differentiate between the iris and the cornea and
accurately identify the user's point of view, the eye region is
processed. Initially, the specified eye region is converted into a
gray-scale image. Then, each pixel in the image is standardized
by comparing it with a specific constant value. Based on this
comparison, the pixel's value is adjusted to either the minimum
possible value (0) or the maximum possible value (255)
(Equation (5)). This process results in the division of the eye
region into two distinct partitions, representing the iris and the
cornea, respectively as demonstrated in Fig. 2.

Pixel Standardazation {
𝑣 = 0 𝑣 < 70
𝑣 = 255 𝑣 ≥ 70

 (5)

 Fig. 2. a) eye region b) standardized eye region

To detect horizontal eye movements, the eye region is
divided into two equal parts, 𝑥0𝑥2 and 𝑥1𝑥0, using a vertical line
segment (depicted in Fig. 3 (a)). In each section, the number of
non-zero pixels is calculated separately for the left side (𝐿) and
the right side (𝑅). Based on the proportion of 𝐿 and 𝑅, the user's
eye point of view (left, right, or center) is predicted using
Algorithm 1.

Similarly, for vertical eye movements, the screen is divided
into two equal parts, 𝑦0𝑦2 and 𝑦1𝑦0 , using a horizontal line
segment. The number of non-zero pixels in each section is
counted for the top (𝑈) and bottom (𝐷) regions. Based on these
measurements, the eye movement is classified as up, down, or
center. Additionally, our eye-tracking model takes into account
the average ratio derived from both the left and right eyes to
enhance the accuracy of tracking.

Algorithm1: Eye Movements

Horizontal Movements

Step1 Divide the cascade into equal regions 𝒙𝟎𝒙𝟐 (right) and 𝒙𝟏𝒙𝟎 (left)

Step2 Estimate the values of 𝑳 and 𝑹

Step3 Find the ratio of 𝑳 to 𝑹

Step4 Calculate the average ratio of both eyes as Equation (6)

𝑳𝑹 =

𝑳
𝑹𝑅𝑖𝑔ℎ𝑡 𝐸𝑦𝑒

+
𝑳
𝑹𝐿𝑒𝑓𝑡 𝐸𝑦𝑒

2

(6)

Step5 Compare 𝑳𝑹 with defined thresholds as: {
𝑹𝒊𝒈𝒉𝒕 𝑳𝑹 ≤ 𝟎. 𝟖
𝑪𝒆𝒏𝒕𝒆𝒓 𝟎. 𝟖 < 𝑳𝑹 ≤ 𝟏
𝑳𝒆𝒇𝒕 𝟏 < 𝑳𝑹

Vertical Movements

Step1 Divide the cascade into equal regions 𝒚𝟎𝒚𝟐 (up) and 𝒚𝟏𝒚𝟎 (down)

Step2 Estimate the values of 𝑼 and 𝑫

Step3 Find the ratio of 𝑼 to 𝑫

Step4 Calculate the average ratio of both eyes as Equation (7)

𝑼𝑫 =

𝑼
𝑫𝑅𝑖𝑔ℎ𝑡 𝐸𝑦𝑒

+
𝑼
𝑫𝐿𝑒𝑓𝑡 𝐸𝑦𝑒

2

(7)

Step5 Compare 𝑼𝑫 with defined thresholds as: {
𝑼𝒑 𝑼𝑫 ≤ 𝟒. 𝟑

𝑪𝒆𝒏𝒕𝒆𝒓 𝟒. 𝟑 < 𝑼𝑫 ≤ 𝟒. 𝟕
𝑫𝒐𝒘𝒏 𝟒. 𝟕 < 𝑼𝑫

 Fig. 3. a) eye points (normal) b) eye points (blinked)
The next step is to detect the blinking mode of the user. To

do so, we consider a hypothetical horizontal line that is equal to
the longitudinal distance of the eye, represented by points
𝑝1 to 𝑝4 (depicted in Fig. 3 (b)). Subsequently, the coordinates
of the middle points between 𝑝2 and 𝑝3 , as well as between
𝑝5 and 𝑝6 , are determined using Equation (8), where 𝑖 and 𝑗
represent the point indexes. These two obtained points are then
connected with a vertical line that has the same width as the eye's
width. It is important to note that the horizontal line remains
constant in all cases, whereas the vertical line varies with
blinking. Finally, the ratio of the vertical line to the horizontal
line is calculated. By comparing this ratio with specific
thresholds, it is determined whether the user is in a blinking,
scrolling or normal mode.

𝑝𝑖,𝑗𝑚𝑖𝑛
= (

𝑥(𝑝𝑖) + 𝑥(𝑝𝑗)

2
,
𝑦(𝑝𝑖) + 𝑦(𝑝𝑗)

2
) (8)

Algorithm2: Blink Detection
Step1 Draw 𝒑𝟏𝒑𝟒

Step2 Find 𝒑𝟐𝒑𝟑𝒎𝒊𝒏
and 𝒑𝟓𝒑𝟔𝒎𝒊𝒏

 as Equation (8)

Step3 Connect 𝒑𝟐𝒑𝟑𝒎𝒊𝒏
to 𝒑𝟓𝒑𝟔𝒎𝒊𝒏

Step4 Compute the ratio of 𝒑𝟐𝒑𝟑𝒎𝒊𝒏
𝒑𝟓𝒑𝟔𝒎𝒊𝒏

 to 𝒑𝟏𝒑𝟒

Step5 Calculate the average ratio of both eyes as Equation (9)

𝑩 =

𝒑𝟐𝒑𝟑𝒎𝒊𝒏
𝒑𝟓𝒑𝟔𝒎𝒊𝒏

𝒑𝟏𝒑𝟒 𝑅𝑖𝑔ℎ𝑡 𝐸𝑦𝑒

+
𝒑𝟐𝒑𝟑𝒎𝒊𝒏

𝒑𝟓𝒑𝟔𝒎𝒊𝒏

𝒑𝟏𝒑𝟒 𝐿𝑒𝑓𝑡 𝐸𝑦𝑒

2

(9)

Step6 Compare 𝑩 with defined thresholds as: {
𝑩𝒍𝒊𝒏𝒌 𝑩 < 𝟎. 𝟐
𝑺𝒄𝒓𝒐𝒍𝒍 𝟎. 𝟐 ≤ 𝑩 ≤ 𝟎. 𝟑
𝑵𝒐𝒓𝒎𝒂𝒍 𝟎. 𝟑 < 𝑩

TABLE II. Cursor Status based on the predicted eye direction

Eye Direction Cursor Status

Right 20mm in the positive direction of x-axis

Left 20mm in the negative direction of x-axis

Up 7mm in the positive direction of y-axis

Down 7mm in the negative direction of y-axis

Center No Change

TABLE III. Cursor Status based on the predicted blink direction

Blink Detection Cursor Status

Right Right Click

Left Left Click

Scroll + Looking Up 40mm scroll in the positive direction of y-axis

Scroll + Looking

Down
40mm scroll in the negative direction of y-axis

Table II and III provide an overview of the cursor's status
based on eye movement and blinking, respectively.
Additionally, the variations of these parameters over a three-
minute tracking period are depicted in Fig. 4, 5 and 6. The results
show that each parameter associated with eye movements (up,
down, right, left and center) fluctuates as the user shifts their
gaze. By comparing these parameter values to specific
thresholds, the cursor's position is determined at any given
moment.

Fig. 4. Vertical movement parameters over time (minute)

Fig. 5. Horizontal movement parameters over time (minute)

Fig. 6. Blink parameters over time (minute)

Lastly, the eye-tracking environment is illustrated in Fig. 7.
The detected face and eyes are highlighted with boxes.
Additionally, the two vertical and horizontal lines that have been
calculated are visible. In addition, the vertical eye position (up,
down, center) and horizontal eye position (right, left, center) is
stated in left and right side of the screen respectively.
Furthermore, blink and scroll status is shown in the center.

Fig. 7. Eye-tracking environment

B. Robatic Arm

The parallel robot arm used in this study (Fig. 10) has three
degrees of freedom and is equipped by three SG90 servo motors
plus an Arduino UNO board. It consists of 26 different pieces
that are assembled using screws. The electrical components used
to design the robot arm are listed below and can be seen in Fig.
8.

• Arduino UNO
• Bread Board
• Three SG90 servo motors
• +5 Volt voltage source
• Jumper Wire

Fig. 8. Schematic of the electronic elements used in the Robotic Arm

The majority of letters in the Latin alphabet can be broken

down into two main components: straight lines and curves.

Therefore, to simplify the writing process for the robot, each

letter is converted into a combination of vertical and horizontal

lines [19]. For example, the letter C is represented as shown in

Fig. 9.

Fig. 9. A simple version of the letter with vertical and horizontal lines

Inverse kinematics is utilized to position the servo motors

accurately and enable the robot to write the desired letter. In

direct kinematics, the coordinates of the robot arm's end are

determined based on the positions (angles) of the actuators

(servo motors). Nevertheless, in inverse kinematics, the process

is reversed: the actuators are positioned based on the input

coordinates of the arm's end. This operation is essential for

various robotic tasks such as moving a tool along a specific

path, relocating objects, or obtaining a specific viewpoint.

Inverse kinematics has been extensively studied, and multiple

techniques have been developed to solve it.

In the next step, the dimensions of the arm are measured.

The exact angles of the servo motors for each letter are then

determined based on the inverse kinematics of the robot. After

transforming all the letters into lines and obtaining the

coordinates of the robot arm's pen tip (𝑝
𝑥
, 𝑝

𝑦
, 𝑝

𝑧
), as well as the

start and end points of each line, these values are used as input

for the inverse kinematics calculation. This process yields the

required angles for writing each letter. Finally, the Arduino

board is programmed using the calculated angles to actuate the

servo motors and enable the robot to write the letters.

Fig. 10. The final robotic arm

The corresponding parameters for each servo motor are

presented in Table IV and demonstrated in Fig. 11, 12, and 13.

The angles 𝑞
1
, 𝑞

2
 and 𝑞

3
 represent the angles of the middle,

right, and left servo motors, respectively. Additionally,

Equations (10) to (22) describe the equations associated with

the dynamics of the robot.

TABLE IV. Robot Arm Parameters

Parameter Definition

𝑋 x axis

𝑌 y axis

𝑍 z axis

𝑙0
distance between the center of the coordinate and the

center of the robotic arm

𝑙1 distance between the center of the robotic arm and l3

𝑙2 length of the front piece of the arm

𝑙3,0 upper distance between 𝑙2 and 𝑙4

𝑙3,1 lower distance between 𝑙2 and 𝑙4

𝑙4 length of the back piece of the arm

𝑞1
anticlockwise angle between y-axis and the arm

(the angle of the middle servomotor)

𝑞2
anticlockwise angle between x-axis and 𝑙2

(the angle of the right servomotor)

𝑞3
anticlockwise angle between z-axis and 𝑙3,1

(the angle of the left servomotor)

𝑞3,0 anticlockwise angle between 𝑙2 axis and the arm

𝛼 angle between 𝑠 and 𝑟

𝛽 angle between 𝑙2 and 𝑠

𝛾 angle between 𝑙2 and 𝑙3

𝜑 angle between 𝑙3,1 and 𝑒

Ψ angle between 𝑙2 and 𝑒

𝑑5 distance between the center of the robot and the pen

𝑒 diagonal distance between 𝑙2 and 𝑙4

𝑠
distance between the center of the servo motor and

center of the pen

𝑟
horizontal distance between the center of the servo motor

and center of the pen

𝑧
vertical distance between the center of the pen and the

center of the servo motor

ℎ
distance between the center of the servo motor and the

ground

𝑞1 = tan−1
𝑝𝑥 − 𝑙0

𝑝𝑥
+ sin−1

𝑑5

√(𝑝𝑥 − 𝑙0)2 + 𝑝𝑦
2

)
 (10)

𝑞2 = 𝜋 − 𝛼 − 𝛽 (11)

𝑞3 = Ψ + 𝜑 +
𝜋

2
− 𝑞2 (12)

𝑞3,0 = 𝜋 − 𝛾 (13)

𝛼 = tan−1
𝑧

𝑟
 (14)

𝛽 = cos−1(
𝑙2

2 − 𝑙3
2 + 𝑠2

2𝑠𝑙2
)

 (15)

𝛾 = cos−1(
𝑙2

2 + 𝑙3
2 − 𝑠2

2𝑙2𝑙3
)

 (16)

𝑠 = √𝑟2 + 𝑧2 (17)

𝑟 = √𝑝𝑥
2 + 𝑝𝑦

2 − 𝑙1
 (18)

𝑒 = √𝑙3,0
2 + 𝑙2

2 − 2𝑙3,0𝑙2cos (𝑞3,0)
(19)

Ψ = sin−1(
𝑙3,0sin (𝑞3,0)

𝑒
)

(20)

𝜑 = cos−1(
𝑒2 + 𝑙3,1

2 − 𝑙4
2

2𝑒𝑙3,1
)

(21)

𝑧 = 𝑝𝑧 − ℎ (22)

Fig. 11. Robotic arm parameters (1)

Fig. 12. Robotic arm parameters (2)

Fig. 13. Robotic arm parameters (3)

To establish a connection between the robot and the eye-

tracking system, a Graphical User Interface is created using the

Processing IDE, as shown in Fig. 14. The program

communicates with the Arduino through serial communication.

The user is able to control the cursor using eye movements and

select a letter by blinking. When a key is pressed, a

corresponding sound is played, enhancing the user's

understanding and interaction with the system. Finally, some

words are printed out in order to evaluate the handwriting of the

robot. The word ‘CONTROL’ in Fig. 15 is an example.

Fig. 14. GUI for the robotic arm

Fig 15. Writing the word ‘CONTROL’ with the robotic arm

C. Smart Wheelchair

This section highlights the development of the eye-tracking-
based smart wheelchair intended for individuals with mobility
impairments. The smart wheelchair is equipped with various
components, including Arduino UNO, Driver L298N, Bluetooth
06HC, Two DC Motors, and an Ultrasonic Sensor, as depicted
in Fig. 16.

Fig. 16. Electronic elements used in smart wheelchair

The image processing section of the system involves a built-
in webcam on a laptop and custom image processing software
developed in Python. Open-CV is utilized to determine the
direction of eye movements based on captured images. The user
interacts with the system through a user interface displayed on
the computer, which sends commands to the Arduino via
Bluetooth. The Bluetooth module receives these command
signals at the receiving end and finally Arduino controls the
motors accordingly.

In the wheelchair's warning module, ultrasonic sensors are
employed to detect objects in front of the wheelchair by emitting
and receiving sound waves. The Arduino processes the data to
calculate the distances to obstacles. If an obstacle is detected, the
Arduino sends a stop command, and the motors halt.

The L298 driver, in conjunction with the Arduino, allows for
the control of the speed and direction of the DC motor using
pulse width modulation and an H bridge. Pulse width
modulation adjusts the average input voltage by generating a
sequence of on and off pulses. The duty cycle, which determines
the width of the pulses, affects the average voltage applied to the
DC motor. A higher duty cycle results in a higher average
voltage and, consequently, a higher speed, while a lower duty
cycle leads to a lower average voltage and a lower speed. The
rotation direction of the DC motor can be controlled by changing
the polarity of its input voltage, typically achieved using an H
bridge. The H bridge circuit consists of four switches arranged
in the shape of the letter "H," with the motor in the center. By
closing specific switches simultaneously, the polarity of the
voltage applied to the motor is reversed, causing it to rotate in
the opposite direction.

The designed graphical interface is illustrated in Fig. 17.
Serial communication is employed between the program and the
Arduino, with data being transferred via Bluetooth and the speed

of communication between the computer and the Bluetooth
module must be set accurately to ensure proper serial
communication. The user controls the smart wheelchair (Fig.
18) by sending one movement command as in Table V from the
GUI to the Arduino.

Fig. 17. GUI for wheelchair

Fig. 18. Smart Wheelchair overview

TABLE V. Direct Current Motor Status

Direction IN1 IN2 IN3 IN4

Stop 0 0 0 0

Forward 1 0 1 0

Backward 0 1 0 1

Right 1 0 0 1

Left 0 1 1 0

III. EVALUATION

In order to assess the effectiveness of the eye tracking GUI,

a step function is defined and tracked, as depicted in Fig. 19.

The axes represent the dimensions of the laptop screen

(1920*1080). It can be observed that the vertical movements

exhibit slightly higher accuracy, while the horizontal

movements show some level of noise.

Fig. 19. Eye Tracking Evaluation

Moreover, the Mean Square Error (MSE) and Root Mean

Square Error (RMSE) is utilized for quantitative evaluation of

the system. Equation (23) and (24) represents the formula for

MSE and RMSE, where 𝑞 and 𝑞𝑑 indicate the tracked and

reference path values for the 𝑖𝑡ℎ data point, respectively, and 𝑁

denotes the number of samples. Table VI demonstrates the

MSE values for both vertical and horizontal directions,

indicating that the system performs better in terms of vertical

movements.

MSE =
1

𝑁
 ∑ (𝑞(𝑖) − 𝑞𝑑(𝑖))2

𝑖∈data

 (23)

RMSE = √
1

𝑁
 ∑ (𝑞(𝑖) − 𝑞𝑑(𝑖))2

𝑖∈data

 (24)

TABLE VI. MSE and RMSE for vertical and horizontal tracking

Movement Direction MSE RMSE

Vertical 0.168 0.410

Horizontal 0.254 0.504

Total 0.333 0.577

IV. DISCUSSION

This study has successfully developed an eye-tracking-based
automatic wheelchair control system, providing individuals with
physical disabilities the ability to control the wheelchair through
eye movements only by looking at a screen. To ensure safety,
ultrasonic sensors are integrated into the wheelchair, enabling
immediate stops when obstacles are detected. This gaze-
controlled wheelchair not only offers easy accessibility for the
disabled people but also enhances safety by providing automatic
obstacle protection. Additionally, the study has also achieved
the capability of writing using a robot arm. This advancement is
expected to be well-received, as it allows the folk with severe
physical and mobility limitations to create content without
requiring human assistant. However, our system's tracking
accuracy is impacted by the lighting conditions in the
environment. To improve the performance in future works, the
following suggestions are proposed.

 Employing a higher-resolution camera to improve tracking
accuracy.

 Utilizing servo motors with higher torque for accurate
positioning of the robot arm at higher locations.

 Developing a robot arm with stronger and more stable
hardware that is lightweight and easy to reposition.

 Incorporating servo motors with a high weight tolerance.

 Implementing a system where the paper continually moves on
a rail, enabling the robot to write all the letters in one location
without the need for arm extension.

V. CONCLUSION

This paper focuses on implementing an eye-tracking based

method using a robotic arm and a wheelchair to assist

individuals with severe disabilities in their daily activities. Both

the robotic arm and smart wheelchair are connected to the eye-

tracking system through a graphic user interface on a local

computer. The results indicate satisfactory performance in

terms of both speed and accuracy. In future work, there is

potential for improving the hardware components.

Additionally, since eye trackers are not widely utilized by the

general public, further research in this field can serve as a

foundation for conducting applied research in related areas.

ACKNOWLEDGMENT

This research received no external funding.

AUTHOR CONTRIBUTION

The authors contributed equally on this paper and the last author

supervised this study.

REFERENCES

[1] N. S. Zamani, M. N. Mohammed, M. I. Abdullah, and S. Al-Zubaidi, “A

new developed technique for handwriting robot,” in 2019 IEEE International
Conference on Automatic Control and Intelligent Systems (I2CACIS), 2019.

[2] S. Mahmud et al., “A multi-modal human-machine interface for controlling
a smart wheelchair,” in 2019 IEEE 7th Conference on Systems, Process, and

Control (ICSPC), IEEE, 2019, pp. 10–13.

[3] C. Aruna, A. D. Parameswari, M. Malini, and G. Gopu, “Voice recognition

and touch screen control based wheel chair for paraplegic persons,” in 2014

International Conference on Green Computing Communication and Electrical
Engineering (ICGCCEE), 2014.

[4] B. Gold, N. Morgan, and D. Ellis, “Speech and audio signal processing:
processing and perception of speech and music,” John Wiley & Sons, 2011.

[5] S. M. T. Saleem, S. Fareed, F. Bibi, A. Khan, S. Gohar, and H. H. Ashraf,
“IMouse: eyes gesture control system,” International Journal of Advanced

Computer Science and Applications, vol. 9, no. 9, 2018.

[6] J. B. Mulligan, “Image processing for improved eye-tracking accuracy,”

Behav. Res. Methods Instrum. Comput., vol. 29, no. 1, pp. 54–65, 1997.

[7] B. Wąsikowska, “The application of eye tracking in business,” 2014.

[8] A. Taghizade and Z. Aghakasiri, “Eye-Tracking Method’Usage for
Understanding the Cognitive Processes in Multimedia Learning,” Journal of

Educational Studies, vol. 11, pp. 41–52, 2018.

[9] L. Scalera, S. Seriani, P. Gallina, M. Lentini and A. Gasparetto, “Human–

robot interaction through eye tracking for artistic drawing,” Robotics 10, no. 2,

p. 54, 2021.

[10] A. Namdari, M. A. Samani and T. S. Durrani, “Lithium-ion battery

prognostics through reinforcement learning based on entropy
measures,” Algorithms 15, no. 11, p. 393, 2022.

[11] E. Demjén, V. Aboši, and Z. Tomori, “Eye tracking using artificial neural
networks for human computer interaction,” Physiol. Res., vol. 60, no. 5, pp.

841–844, 2011.

[12] I. Rakhmatulin and A. T. Duchowski, “Deep neural networks for low-cost

eye tracking,” Procedia Comput. Sci., vol. 176, pp. 685–694, 2020. [13] J.

Griffin and A. Ramirez, “Convolutional neural networks for eye tracking
algorithm,” arXiv Prepr. 2018.

[14] T. Soukupova and J. Cech, “Eye blink detection using facial landmarks,”
in 21st computer vision winter workshop, Rimske Toplice, Slovenia, 2016.

[15] N. Zdarsky, S. Treue, and M. Esghaei, “A deep learning-based approach
to video-based eye tracking for human psychophysics,” Front. Hum. Neurosci.,

vol. 15, p. 685830, 2021.

[16] W. Fuhl, Y. Rong, and E. Kasneci, “Fully convolutional neural networks

for raw eye tracking data segmentation, generation, and reconstruction,” in
2020 25th International Conference on Pattern Recognition (ICPR), 2021.

[17] H. D. Kannan, “Eye tracking for the iPhone using deep learning,”
(Doctoral dissertation, Massachusetts Institute of Technology), 2017.

[18] F. Manzi et al., “The understanding of congruent and incongruent
referential gaze in 17-month-old infants: an eye-tracking study comparing

human and robot,” Sci. Rep., vol. 10, no. 1, p. 11918, 2020.

[19] S. Yussof, A. Anuar, and K. Fernandez, “Algorithm for robot writing using

character segmentation,” in Third International Conference on Information

Technology and Applications (ICITA’05), 2005.

