
EasyChair Preprint
№ 11047

Deep Stacking Ensemble Learning Applied to
Profiling Side-Channel Attacks

Dorian Llavata, Eleonora Cagli, Rémi Eyraud, Vincent Grosso and
Lilian Bossuet

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 9, 2023



Deep Stacking Ensemble Learning applied to

Pro�ling Side-Channel Attacks

Dorian Llavata1,2, Eleonora Cagli1, Rémi Eyraud2, Vincent Grosso2

, and Lilian Bossuet2

1 Univ. Grenoble Alpes, F-38000, Grenoble, France, CEA, LETI, MINATEC
Campus, F-38054 Grenoble, France.

{dorian.llavata,eleonora.cagli}@cea.fr
2 Univ. Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School,

Lab. Hubert Curien UMR 5516, F-42023, SAINT-ETIENNE, France.
{remi.eyraud,vincent.grosso,lilian.bossuet}@univ-st-etienne.fr

Abstract. Deep Learning is nowadays widely used by security evalua-
tors to conduct side-channel attacks, especially in pro�ling attacks that
allow a supervised learning phase. However, designing an e�cient neu-
ral network model in a side-channel attack context can be a di�cult
task that may require a laborious hyperparameterization process. Hy-
perparameter selection is known to be a challenging problem in Deep
Learning, while being a crucial factor for neural networks performances.
Recent works investigate the so-called Deep Ensemble Learning in the
side-channel context. It consists in using multiple neural networks in a
single predictive task and aggregating the several predictions in an op-
portune way. The intuition behind is to use the power of numbers to
improve the attack performance. In this work, we propose to use Stack-
ing as an aggregation method, in which a meta-model is trained to learn
the best way to combine the output class probabilities of the ensem-
ble networks. Our proposal is supported by several experimental results,
that allow to conclude that the use of Stacking can relieve the security
evaluator from performing a �ne hyperparameterization.

Keywords: Side-Channel Attacks · AES · Neural Networks · Ensemble
Learning · Stacking.

1 Introduction

Embedded cryptography on constrained electronic devices like smart cards can
be vulnerable to Side-Channel Attacks (SCA). These attacks exploit physical
leaks collected on a device during the execution of cryptographic operations,
such as energy consumption [16] or electromagnetic emission [10]. The analysis
of these physical leaks can allow an attacker or an evaluator to retrieve sensitive
data and compromise the devices security. Depending on the level of access and
control of the target device, SCA can be categorized as pro�ling (e.g. template
attacks [7]), or non-pro�ling attacks (e.g. DPA [16]/CPA [5]). The pro�ling sce-
nario works on the principle that the evaluator has full control over a clone device



2 D. Llavata et al.

identical to the target device. In this con�guration, the evaluator splits the pro-
cess into two phases. First, a pro�ling or characterization phase in which he uses
the clone device to determine when the sensitive variable is leaking and to design
an accurate model of the physical leakage of the clone device. Second, an attack
phase in which the characterized leakage is used to attack the real target device.
Since a pro�ling SCA may be viewed as a classical supervised learning problem,
various machine learning methods have been investigated, such as Support Vec-
tor Machines [14] and Random Forests [17]. In recent years, pro�ling SCA based
on deep learning have proved to be very e�cient [3, 6, 18]. However, deep learn-
ing algorithms have much more tunable hyperparameters than other techniques.
Their correct con�guration is essential to obtain a good attack performance and
it is very di�cult to precisly know which hyperparameters in�uence the attack
performance. In particular, too complex neural network architectures may be
prone to the over�tting phenomenon, that is, when a model learns the training
data by heart and is no more able to generalize on unseen data.

1.1 Related works

A few papers discuss about methodologies to build neural networks for SCA.
Zaid et al. [27] proposed a methodology to generate robust convolutional neural
network architectures. The authors used visualization tools to try to under-
stand the impact of each convolutional hyperparameter. Robissout et al. [23]
explore several regularization techniques (Batch Normalization, Weight decay
and Dropout) to improve the attack performance of a neural network. Some
work has investigated methods to automate the search of hyperparameters, Wu
et al. [26] proposed to use Bayesian optimization to �nd optimal hyperparame-
ters for neural network architectures. In the same way, Rijsdijk et al. [22] propose
the use of Reinforcement Learning techniques. More recently, the SCA commu-
nity has begun to experiment with neuroevolution and genetic algorithms for
neural network design [1]. On the other hand, to improve the generalization and
to limit the e�orts of hyperparameterization, several works propose to use En-
semble Learning. Destouet et al. [8] use an ensemble of models for approximate
a leakage model by targeting di�erent sensitive values. Gao et al. [11] explore
di�erent ensemble methods based on decision tree to improve the attack success,
including RusBoost, Bagging, and Adaboost methods. Recent work has begun
to investigate the use of ensemble learning with deep neural network as weak
model in SCA context. Perin et al. [20] provided experimental results on imple-
mentations of symmetric algorithms which show that combining predictions from
multiple neural networks of di�erent architectures with a bagging method allows
to gain in attack performance. An extension of this work has been proposed by
Zaid et al. [28], on asymmetric algorithms, with the proposal of a new loss func-
tion named Ensembling loss which aims to maximizing diversity between weak
models during the training process.



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 3

1.2 Contributions and Paper organization

Contributions. This paper extends the preliminary results of deep ensemble
learning applied in pro�ling SCA context by proposing to use stacking as an
aggregation method [25]. We report an experimental exploration of the stacking
method, whose goals are to assess the soundness of such a technique in pro�l-
ing SCA context to highlight its adventages and inconvenients and to compare
it with the bagging. The performance optimization is out of the scope of the
experimental campaign.

Paper organization. The paper is organized as follows. Section 2 provides
background about pro�ling SCA and ensemble learning. Section 3 presents our
experimental results, together with a discussion about how stacking can sig-
ni�cantly improve generalization and attack performance by comparing it with
bagging. In Section 4 we discuss about results, highlight the cost and the e�ec-
tiveness of such an approach to reduce the hyperparameterization e�ort and try
to deduce a way to construct suitable architectures for a meta-model. Finally,
in Section 5 we conclude and discuss possible future research directions.

2 Introduction to Pro�ling Side-Channel Attacks and

Ensemble Learning

2.1 Notations

Let capital letters X denote random variables (random vectors if in bold X),
and the corresponding lowercase letters x denote their realizations. (resp. x for
vectors). During their acquisition, each trace is associated with a target sensitive
variable Z = f(K,P ), where P denotes some public variable, e.g. a plaintext,
and K the part of secret key the evaluator aims to retrieve.

2.2 Pro�ling Side-Channel Attacks and Evaluation metrics

Pro�ling SCA. Side-channel attacks are typically performed using a divide-
and-conquer strategy to independently attack chunk of the secret key called
subkeys. For example, in the case of AES-128, instead of directly attacking the
entire 16-byte key (which is computationally infeasible), the attack is divided
into 16 parts and attempts to recover each 1-byte subkey separately. In the
pro�ling phase, the evaluator aims to characterize the leakage from the clone
device. The issue of such a characterization may be, for example in the case of
classi�cation-task-inspired deep learning attacks, a model F (z, t) that provides
an estimate of the posterior probability Pr[Z = z|T = t], being Z the target
sensitive variable and T the random vector representing side-channel traces.
In this work, the model F is assumed to be either a Multilayer Perceptron
(MLP) or a Convolutional Neural Network (CNN). Once the pro�ling phase is
done, and the model is able to establish the relationship between the leakage
and the corresponding value of the sensitive variable (which is linked to the



4 D. Llavata et al.

target subkey), the evaluator applies the model on additional traces from the
real target device. Finally to retrieve the subkey value, the evaluator will need
to match the predicted sensitive values to an estimation of the subkey value.
To do this, all possible values of a subkey are enumerated, and for each of
them, all resulting sensitive variables are computed. Then, for all the subkey
candidates, the evaluator exploits the set of traces by summing the logarithms
of the output probabilities of their respective labels. This gives the following
logarithmic probability vector g = (g1, . . . , gC) used to determine the likelihood
that each of the C candidates is the correct subkey :

gQk =

Q∑
i=1

log(F [f(k, pi), ti]), (1)

where Q is the number of attack traces and f(·) is the sensitive operation,
The value F [f(k, pi), ti] denotes the f(k, pi)-th compotent of output of the neural
network model, given the trace ti as an input. It is interpreted as the probabil-
ity assigned by the pro�ling model of obtaining the sensitive variable f(k, pi)
corresponding to leakage trace ti with a subkey hypothesis k and a plaintext pi.

Evaluation metrics. Accuracy (de�ned as the successful classi�cation rate) is
the most common metric to evaluate a deep learning model. Nevertheless, while
this metric is perfectly suitable for a general classi�cation problem, it may not
be suitable for SCA, as discussed by Cagli et al. [6]. Indeed, in SCA context
it only corresponds to the success rate of a simple attack, i.e. a single-trace
attack. When the evaluator can exploit several traces for varying plaintexts, the
accuracy metric is not su�cient to evaluate the attack performance. In this case,
it is worth considering SCA speci�c metric like the Empirical Guessing Entropy
(GE) [24]. After the attack, the evaluator exploits the sorted logarithmic vector
of candidate subkeys called the rank vector r = (r1, r2, ..., rC) = Sort(g). In the
vector, r1 is considered the most likely subkey and rC as the least likely. The
position of the good subkey k∗ in the vector is called the rank of the subkey.

RankQ(k
∗) = i such that rQi = k∗ (2)

Guessing entropy is de�ned as the expected rank of the correct subkey:

GEQ = E[RankQ(k
∗)] (3)

It may be estimated by the empirical average rank of the subkey k∗, among all
the subkey hypothesis. This metric is estimated empirically, by performing the
attack several times from di�erent subsets of traces. In this work, we randomly
select subsets from all available attack traces and set the number of attacks to
100. To compare the attack performance of our models, we will also look at
another metric derived from the GE computation: Na will denote the number of
traces required for a successful attack. In other words, an attack is considered
successful using Na traces if the Guessing entropy is stably equal to 1.

N∗
a = min(Q|GEQ(k

∗) = 1) (4)



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 5

2.3 Ensemble Learning

In ensemble learning, the models used within the ensemble usually perform
poorly individually (slightly better than random guessing) and are called weak

models. Ensemble methods combine the individual predictions of weak models
via an aggregation method. The principle is to synergistically use an ensemble
of several di�erent weak models and to correctly combine their predictions in
order to reduce their variance and their biases to obtain a more accurate and
robust model called the ensemble model. As explained in [2], if the weak models
errors are uncorrelated, the ensemble can be more e�cient than any individual
weak model. Combining the predictions of complementary weak models can thus
improve the generalization, i.e. the ability of a trained model to perform on an
unseen test set as well as on the training set. Concerning how to combine the
weak models and build the ensemble model, in this work we use two types of
meta-algorithms 3 called bagging [4] and stacking [25].

Bagging. The principle of bagging (depicted in Figure 1a) is to build several
weak models (usually models of homogeneous types) independently, then aggre-
gate them by an averaging or voting process to obtain the �nal predictions. The
training set is usually subsampled to train the weak models on di�erent sub-
samples of the training data. However in the SCA context the pro�ling phase
requires a high number of traces. Thus, as the previous work of Perin et al. [20],
we considered in this work the same training set for all weak models. The agge-
gation method that we used is the method proposed by Perin et al. [20] which
consists of summing the log-probabilities during the attack phase. The new sum
of the log-probabilities e based on the Equation 1 is calculated for each key byte
hypothesis k :

ek =

W∑
m=1

Q∑
i=1

log(F [f(k, pi), ti]m), (5)

where W is the number of weak models.

Stacking. The principle of stacking (depicted in Figure 1b) di�ers mainly from
bagging in three ways. First, in stacking, it is common to consider weak models
of heterogeneous types. Second, weak models are usually trained on the same
training set. Finally, to aggregate the weak models predictions, stacking uses a
higher-level model, called meta-model, which is trained to produce new predic-
tions.

2.4 Datasets

For all datasets, the experiments are implemented in Python 3.9 using the Keras
2.8 library and are run on a workstation equipped with 32GB RAM and a

3 There are other ensemble methods, in particular the Boosting [9], which we have ex-
perimented without obtaining good enough performance for the considered datasets.



6 D. Llavata et al.

(a) Bagging ensemble learning. (b) Stacking ensemble learning.

Fig. 1: Di�erent ensemble learning methodologies.

NVIDIA Quadro P4000 with 8GB memory.

ASCADv1. This dataset contains traces of an 8-bit AVR microcontroller
running a masked AES-128 implementation. There are actually two versions of
the dataset that we will name ASCADF and ASCADV. ASCADF has a �xed
key for training traces and consists of 50,000 traces for pro�ling and 10,000 for
attack. Traces contain 700 time samples, a.k.a. features. ASCADV has variable
keys for training traces and consists of 200,000 traces for pro�ling and 100,000
traces for attack. Traces contain 1400 features. Each of these versions also in-
cludes 3 variants to add a desynchronization type countermeasure of 0, 50 and
100 desynchronization samples respectively. The dataset was introduced in [3]
and is publicly available at https://github.com/A-NSSI-FR/ASCAD.

AES HD. This dataset was introduced in [21]. It contains traces from an
unprotected AES-128 hardware implementation. The AES HD dataset does not
include any countermeasure but has the particularity to be very noisy. 50,000
traces are used for pro�ling and 25,000 are used for attack. Traces contain 1250
features. The dataset is publicly available at https://github.com/AESHD/AES-
_HD_Dataset.

3 Experiments

3.1 Weak models

Number of weak models. Some works has investigated the question of how
many weak models should be used in an ensemble [12, 13, 19]. To summarize, it
appears that the optimal ensemble size depends on the problem and the perfor-
mance of the weak models, so generally the ensemble size can be considered as
another hyperparameter that can be searched by experimental analysis. Notably,
Hansen and Salamon [12] suggested that ensemble with as few as 10 weak models
were in general adequate to su�ciently reduce test error and improve general-

https://github.com/ANSSI-FR/ASCAD
https://github.com/AESHD/AES_HD_Dataset
https://github.com/AESHD/AES_HD_Dataset


Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 7

(a) Attack performance of the weak models
on each datasets.

(b) ASCADV 0d and ASCADV 100d di-
versity of predictions.

Fig. 2: Weak models informations.

ization. Therefore in this work we have chosen to limit the scope of analysis to
ensemble of up to 10 weak models.

Weak models training and results. To evaluate bagging and stacking ensem-
ble learning methods, we trained for each dataset 10 neural networks, including
MLPs and CNNs with some hyperparameters randomly selected from de�ned
ranges. Varying models architectures will allow to learn di�erent features from
the same training set. Appendix A provides the search spaces of the weak mod-
els. An exception to such a random selection of hyperparameters is done in the
case of ASCADV 100d dataset. Here, the convolutional part of the CNNs has
been �xed once for all in order to deal with the high desynchronization and
obtain weak models able to perform successfull (even if poorly performning)
attacks independently. However, in Section 3.2.3 we explore some experimental
results on ASCADV 50d where the convolutional part has not been �xed. Each
network was trained with a stop criterion by monitoring the validation loss. The
training and validation sets are obtained from the labeled data with a split ratio
of 80%/20%. We focused onto a single byte of the AES secret key, and chose to
target directly the corresponding �rst round Sbox output value as sensitive tar-
get variable. It may assume 256 possible values. The attack performance of the
weak models are depicted in Figure 2a. It may be remarked that on ASCADF 0d
we have a signi�cant performance gap between the weak models. On the other
hand on AES HD our weak models are all very poorly performing due to the
very high noise level of the dataset. Figure 2b) depicts the Euclidean distance
between the predictions of the best and worst weak models for the ASCADV 0d
and ASCADV 100d datasets. A striking di�erence in diversity can be observed
through the fact that �xing the convolutional part on ASCADV 100d resulted
in weak models with very close predictions.



8 D. Llavata et al.

Choice of weak models. Once obtained 10 weak models, and in order to use a
posteriori ensemble learning, we have to choose the models to use in the ensemble.
Intuitively, a good ensemble is one where the individual weak models are both
accurate and make their errors on di�erent parts of the input space. Nevertheless
as with the ensemble size, the choice of weak models to combine must often be
found experimentally. Due to the performance gap and the lack of diversity on
some datasets, we ranked our 10 weak models from the best performing in the
attack (minimal Na) to the worst performing in order to increase ensemble size
by decreasing attack performance.4 We made this choice in order to take the
point of view of an evaluator who knows the attack performance of his weak
models and wishes to use a posteriori ensemble learning to improve his attack.
This also allowed us to consider the ideal conditions for bagging and assess its
limitations in this context.

3.2 Stacking implementation and results

Scope of the experimentations. Neural network stacking approach in SCA
context has been mentioned by Perin et al. [20], but to the best of our knowl-
edge it has never been explored in more detail in the literature. Our intuition
is that a meta-model should perform better than an average process resulting
from bagging. However, the complexity is increased by the addition of meta-
model training, and we believe that this approach may be sensitive to the meta-
model con�guration. Therefore, rather than using a single hyperparameterized
meta-model, our experiment consists in training 30 meta-models with random
hyperparameter con�gurations. By analyzing the variability of the results for
the 30 meta-models, we are able to verify if the stacking approach is robust
or if it requires a careful meta-model hyperparameterization. We chose to use
MLP as meta-models. Our 30 MLPs from the search space shown in Table 1
are the same for all ensemble sizes, in order to check the meta-models behavior
when the ensemble size increases. In order to study the impact of stacking on
our weak models, we compared the performance for di�erent ensembles size with
the performance of bagging and the best trained weak model. Our performance
criterion is the convergence of Guessing Entropy. We trained the meta-models
with the same training data of the weak models.5

Concatenation method. For the sake of completeness, we provide a descrip-
tion of the way we stacked the weak models predictions in our stacking experi-
ments. We stack the weak models predictions in depth-wise sequence: if we have
N weak models and each of them produces 256 value per prediction, we �nally
get a stacked prediction c of shape 256 ∗N to train the meta-models:

4 Other criteria has been tested during the experimental campaign, but the obtained
results were less performant and uninteresting in our opinion. Thus, they have been
omitted.

5 We also tried to train on the validation dataset, but the results were generally worse
due to the lack of data. Results have thus been omitted.



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 9

c = [P 0
0 , P

1
0 , ..., P

N
0 , ..., P 0

256, P
1
256, ..., P

N
256], (6)

where P j
i denotes the i-th compotent of output of the weak model j. Anyway,

we remark that this choice should have no impact a priori on the learning process,
since we use MLP as meta-models and the input layer of the MLP is fully
connected (the order of the input thus not a�ect the possible functions it could
model). Interestingly, we believe that this choice may have an important impact
in cases where the meta-model is a di�erent kind of model, for example a CNN.
Indeed, CNN extracts information locally from the input, thus the proximity of
the probability predictions for a same class could be a bene�t for this kind of
meta-model. An analysis of these impacts is left for future works.

Table 1: Hyperparameter search space for meta-models.
Hyperparameter min max step

Number of layers 2 8 1

Number of neurons 100 1000 100

Activation Relu, Elu, Selu, Gelu, Tanh

Epoch Early stopping : Val loss Patience 20

Learning Rate 0.0001

Mini Batch 100

Optimizer RMSprop

Loss Categorical Crossentropy : metric accuracy

3.2.1 Results on ASCADF 0d and ASCADV 0d

Stacking results. The results of our experiments are summarized in Table 2.
On ASCADF 0d, the best meta-model was trained on the predictions of the 4
best weak models. This meta-model successfully performed the attack in 203
traces, reducing the number of traces required by 81.69% (compared to 1109
traces for the best weak model). A similar performance improvement was ob-
tained on ASCADV 0d with a meta-model trained on the predictions of the 5
best weak models that successfully performed the attack in 582 traces, reducing
the number of traces needed to succeed in the attack by 80.42% (compared to
2973 traces for the best weak model). If we look at the performance of the best
meta-models obtained on each ensemble size, we see that stacking improved the
overall attacks performance on both datasets by 60% and 70% respectively. We
also notice on both datasets that by increasing the ensemble size, the number of
meta-models that improved attack performance tends to decrease. This is prob-
ably due to the fact that the addition of weak models and their knowledge make
the meta-model learning task easier and on these two datasets the meta-models
appeared to be too complex for the learning task. Thus the meta-models over�t
immediately without learning relevant information. This may be con�rmed by



10 D. Llavata et al.

Table 2: Stacking on ASCADF 0d and ASCADV 0d datasets. Nb success col-
umn refers to the number of meta-models that improved attack performance
compared to the best weak model. Min, Max and Mean Na values are estimated
considering only such Nb success meta-models. The best result is highlighted by
a green cell.

NaSize of
Ensemble

Nb success
(Na <1109)

Min Max Mean

Improvement
in number
of traces

2 30/30 371 853 576 66.54%

3 23/30 368 1098 696 66.81%

4 24/30 203 1064 680 81.69%

5 23/30 342 1062 674 69.16%

6 14/30 452 1043 588 59.24%

7 13/30 450 1070 604 59.42%

8 18/30 357 1086 666 67.80%

9 17/30 377 814 589 66.00%

10 15/30 427 989 631 61.49%

(a) Stacking on ASCADF 0d.

NaSize of
Ensemble

Nb success
(Na <2973)

Min Max Mean

Improvement
in number
of traces

2 21/30 673 2448 1306 77.36%

3 11/30 635 2306 1533 78.64%

4 11/30 626 2879 1509 78.94%

5 9/30 582 2601 1341 80.42%

6 8/30 789 2693 1427 73.46%

7 7/30 604 2143 1327 79.68%

8 6/30 678 2475 1412 77.19%

9 5/30 607 2909 1606 79.58%

10 3/30 745 2502 1385 74.94%

(b) Stacking on ASCADV 0d.

observing the behaviour of the early-stopping mechanism : on ASCADF 0d up
to an ensemble size of 5 weak models, the meta-models began to over�t in an
average of 25 epochs, but from an ensemble size of 6, the average learning epoch
before over�tting is only 2 epochs. The phenomenon is even more impressive on
ASCADV 0d, where the meta-models began to over�t in an average of 3 epochs
for the ensemble size of 2 weak models and 2 epochs for the other ensemble sizes.

Comparison with bagging. The best stacking and bagging attack perfor-
mance on both datasets are depicted in Figure 3a and Figure 3b. The behavior
of the attack performance across all ensemble sizes are depicted in Figure 3c and
Figure 3d. We can see that stacking converges faster and allows us to obtain
higher attack performance than bagging. In particular, we can observe from the
results of ASCADF 0d that the bagging process is strongly impacted when our
ensemble contains weak models with a signi�cant performance gap. We observe
that by adding less and less performing weak models in the ensemble, bagging
becomes less and less suitable, until it loses its interest by obtaining lower at-
tack performance than the best individual weak model. Interestingly, stacking
aggregation is less impacted by the high variability in weak model performance
since the meta-model learns the relevance of each weak model. Our intuition
is con�rmed by results on ASCADV 0d, where, in absence of a performance
gap between weak models, the bagging aggregation works properly. However, we
�nd that stacking aggregation signi�cantly improves generalization and attack
performance regardless of ensemble size.



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 11

(a) ASCADF 0d GE of the best stacking
and bagging ensemble.

(b) ASCADV 0d GE of the best stacking
and bagging ensemble.

(c) ASCADF 0d Comparison of stacking
and bagging across all ensemble sizes.

(d) ASCADV 0d Comparison of stacking
and bagging across all ensemble sizes.

Fig. 3: Comparison of stacking and bagging ensemble on ASCADF 0d and AS-
CADV 0d. For Figures (c) and (d), each box lying at the bottom of the i-th
column, informs about the performance (in terms of Na) of the i-th weak model.

3.2.2 Results on AES HD and ASCADV 100d

Stacking results. The results of our experiments are summarized in Table 3.
On ASCADV 100d the best meta-model was trained on the predictions of the
7 best weak models that successfully performed the attack in 351 traces, reduc-
ing the number of traces needed to succeed in the attack by 80.41% (compared
to 1792 traces for the best weak model). If we look at the performance of the
best meta-models obtained on each ensemble size, we see that stacking improved
the overall attacks performance by 80%. An even greater performance improve-
ment was obtained on AES HD with a meta-model trained on the predictions
of the 9 best weak models. This meta-model successfully performed the attack
in 1220 traces, reducing the number of traces required by 94.46% (compared to
22034 traces for the best weak model). If we look at the performance of the best
meta-models obtained on each ensemble size, we see that stacking improved the



12 D. Llavata et al.

Table 3: Stacking on ASCADV 100d and AES HD datasets. Nb success column
refers to the number of meta-models that improved attack performance com-
pared to the best weak model. Min, Max and Mean Na values are estimated
considering only such Nb success meta-models. The best result is highlighted by
a green cell.

NaSize of
Ensemble

Nb success
(Na <1792)

Min Max Mean

Improvement
in number
of traces

2 30/30 429 1172 808 76.06%

3 30/30 423 1256 735 76.39%

4 30/30 362 1160 763 79.79%

5 30/30 369 1141 711 79.40%

6 30/30 352 1070 700 80.35%

7 30/30 351 1130 742 80.41%

8 30/30 351 1333 741 80.41%

9 30/30 369 1097 737 79.40%

10 30/30 369 1137 717 79.40%

(a) Stacking on ASCADV 100d.

NaSize of
Ensemble

Nb success
(Na <22034)

Min Max Mean

Improvement
in number
of traces

2 25/30 1365 4179 2212 93.80%

3 27/30 1507 20542 2704 93.16%

4 28/30 1324 11394 2286 93.99%

5 28/30 1251 8014 2038 94.32%

6 27/30 1253 9641 1988 94.31%

7 29/30 1324 12604 2377 93.99%

8 26/30 1315 8947 1962 94.03%

9 27/30 1220 4556 1865 94.46%

10 27/30 1318 9092 2106 94.01%

(b) Stacking on AES HD.

overall attacks performance by more than 90%. The use of stacking has shown
signi�cant interest for this dataset, allowing to obtain for all ensemble sizes
performances below 2000 traces with ensemble of weak models that have inde-
pendently attack performance above 20,000 traces. Unlike previous experiments,
on these two datasets, stacking proved to be more robust, adding weak models
did not decrease the number of meta-models that improved attack performance.
This may be explained by the fact that the prediction tasks are more complex
on these two datasets, due to the presence of desynchronization for ASCADV
100d and a very high level of noise for AES HD. Therefore the meta-models did
not immediately over�t. On ASCADV 100d, we observe that all meta-models
improved attack performance for all ensemble sizes.

Comparison with bagging. The best stacking and bagging attack perfor-
mance on both datasets are depicted in Figure 4a and Figure 4b. The behavior
of the attack performance across all ensemble sizes are depicted in Figure 4c
and Figure 4d. We can see that stacking converges faster and allows us to ob-
tain higher attack performance than bagging. On ASCADV 100d, another limit
of the bagging process can be visualized. As reported in Section 3.1, in this
experiment we �xed the convolutional part of the CNNs in order to quickly ob-
tain weak models able to perform attacks independently. This resulted in weak
models with very close predictions. Since the bagging process draws its strength
from the diversity of the weak models, the lack of diversity in this case leads to
a poorly performing or even worthless ensemble attack. Interestingly, compared
to bagging, we noticed that stacking was not a�ected by the lack of diversity
between the weak models. On AES HD, the weak models present naturally a
good diversity, thus bagging process is performant. However, as for ASCADV
0d, the performance of bagging is limited by the individual performance of the



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 13

weak models. In comparison, meta-model training results in better association of
weak model predictions and much greater improvement in attack performance.

(a) ASCADV 100d GE of the best stacking
and bagging ensemble.

(b) AES HD GE of the best stacking and
bagging ensemble.

(c) ASCADV 100d Comparison of stacking
and bagging across all ensemble sizes.

(d) AES HD Comparison of stacking and
bagging across all ensemble sizes.

Fig. 4: Comparison of stacking and bagging ensemble on ASCADV 100d and
AES HD. For Figures (c) and (d), each box lying at the bottom of the i-th
column, informs about the performance (in terms of Na) of the i-th weak model.

3.2.3 Results on ASCADV 50d with full random CNNs

In previous experiments on the ASCADV dataset including desynchronization,
in order to obtain individually performing weak models, we �xed the convolu-
tional part of our weak models. In this experiment, in order to have a more
objective analysis of the applicability of stacking in the presence of desynchro-
nization, we trained new weak models in a completely random way by varying
the convolutional part (i.e. including random hyperparameters selection for the
convolutional part). As a result, we obtained very weak models that are not able



14 D. Llavata et al.

to independently succeed in the attack with the 100,000 available attack traces.
After applying stacking on di�erent groups of two weak models, we found that
in each case several meta-models were anyway able to improve GE convergence.
The results of this experiment are shown in Figure 5. In the �rst scenario, the
two weak models show a converging trend, but had not enough traces to succeed
in the attack. We observe that the best trained meta-model reaches the same
performance as the best weak model in less than 50,000 traces (instead of 100,000
traces). Moreover, when we consider all traces, it obtains an average rank under
5 instead of an average rank of 25 for the best weak model. In the second sce-
nario, stacking is particularly interesting: the two weak models are just starting
to converge after 100.000 attack traces, while some meta-models reached a rank
of 2 with the available traces. Finally, in the third scenario, one of the two weak
models converged by placing the correct subkey guess in last position. Interest-
ingly, stacking was able to correct this e�ect to provide a correct convergence
of the GE. Therefore, stacking appears to be robust independently of the weak
models performance. This is encouraging for the interest of the method and its
application in a real attack cases.

(a) Scenario 1. (b) Scenario 2.

(c) Scenario 3.

Fig. 5: Stacking on ASCADV 50d with very weak models.



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 15

4 Discussion

4.1 Stacking aggregation : pros and cons

The comparison of the attack performance improvements of bagging and stack-
ing obtained on each datasets are summarized in Table 4. If we compare the best
performance obtained with the two aggregation methods, we observe that for all
datasets, stacking has always been a better choice, allowing to obtain signi�cant
attack performance improvements compared to bagging and non-ensemble mod-
els. This signi�cant improvement is due to the fact that stacking allows more
sophisticated combinations and transformations of the weak model predictions
by the training of the meta-model. Indeed, the meta-model is able to capture
non-linear relationships between weak model predictions, which allows for more
granular and accurate ensemble predictions. When the bagging was constrained
by the individual performance of the weak models or the lack of diversity within
the ensemble, some meta-models proved to be robust and allowed to improve the
attack performance. This can be explained by the fact that a properly trained
meta-model is able to correctly learn the relevance of each weak model while
being able to learn consistent information even over small variations in ensem-
ble predictions. Thus, the choice as well as the number of weak models is less
determining when considering the stacking ensemble, which makes it a more
�exible method for evaluators interested in using a posteriori ensemble learning.
Interestingly, our experiments revealed that even with very few weak models,
signi�cant performance gains can already be achieved. This suggests that stack-
ing has the ability to extract relevant information from a small subset of diverse
weak models and that there is no need to consider an overly complex ensemble
model. On the other hand, stacking has some drawbacks. Since the meta-model
training is determinant in the success of the ensemble, this adds a new constraint
to the success of the attack. The ensemble model has a higher complexity than
the weak ones due to the addition of the meta-model. Finally, we observed that
the ensemble model often proved to be too complex for the problem. Therefore,
the meta-models tends to over�t quickly. Furthermore, the meta-model needs
a lot of data to generalize properly. For example, our omitted experiments in
training the meta-model on the validation dataset did not work well due to the
lack of data.

Table 4: Comparison of bagging and stacking results on all datasets.

Dataset Best weak model
Bagging

improvement
in number of traces

Stacking (best meta-model)
improvement

in number of traces

AES HD 22034 17798 (20% ) 1220 (94%)

ASCADF 0d 1109 709 (28%) 203 (81%)

ASCADV 0d 2973 2194 (26%) 582 (80%)

ASCADV 100d 1792 1730 (3% ) 351 (80%)



16 D. Llavata et al.

Table 5: Comparison in terms of performance with state-of-the-art architectures.
Dataset Reference Hyperparameterization method Na

Arch. in [3] - 1146
Arch. in [22] Reinforcement learning. 202

ASCADF 0d
Our best Meta-model

4 random weak models
with Na between [1109-2154]

203

Arch. in [3] - 1275
Arch. in [22] Reinforcement learning. 490

ASCADV 0d
Our best Meta-model

5 random weak models
with Na between [2973-3970]

582

Arch. 1 in [23] - 3333
Arch. 2 in [23] Regularization technique. 347

ASCADV 100d
Our best Meta-model

7 random weak models
with Na between [1792-2200]

351

Arch. in [15] - 25000
Arch. in [27] Visualization tools 1050

AES HD
Our best Meta-model

9 random weak models
with Na between [22034-24983]

1220

4.2 Relieving hyperparameterization e�ort

In this section, we provide arguments to promote stacking as a technique to
relieve the hyperparameterization e�ort for a security evaluator. To do so, we
compare here for all datasets the performances of our best meta-model with
di�erent architectures, �nely tuned, proposed in literature Table 5. Even if per-
formance optimization was not at the core of the experiments, we observed that
stacking ensemble can provide with less e�ort similar attack performance to rig-
orously hyperparameterized architectures. For ASCADF 0d and ASCADV 0d,
we observe that with ensembles of weak models whose performance are similar
(or worse) to those obtained with slightly hyperparameterized architectures [3],
we obtain performance similar to high-performance architectures, which are hy-
perparameterized using reinforcement learning [22]. The interest of stacking is
even more striking for AES HD, where with an ensemble of weak models (with
individual performance higher than 20,000 traces), we obtain with less e�ort sim-
ilar performance to high-performance architecture proposed by Zaid et al. [27]
that are properly hyperparameterized. The main interest of stacking ensemble is
to limit the hyperparameterization e�ort. The methodology proposed by Zaid et

al. [27] make it possible to e�ciently hyperparameterize its architecture and thus
obtain a high-performance attack. However, they also assume much knowledge
about datasets and an in-depth study of the impact of hyperparameters using
data visualization tools (which can be time-consuming). Alternatively, the use
of reinforcement learning proposed by Rijsdijk et al. [22] to automate hyperpa-
rameter search is e�ective, but the related process is extremely time-consuming.
Furthermore, the experiments described in Sec. 3.2.3 are very representative:
stacking is able to improve the attack performance even with very weak mod-
els that had (almost) not started to converge. This indicates an interest in the



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 17

method in a more realistic attack scenario. Therefore, stacking may be considered
as a suitable approach to avoid the need for the security evaluator to perform a
�ne tuned hyperparameterization of the neural network architecture.

4.3 Generalizable meta-model

In this section, we propose a quick analysis of the di�erent meta-models we
used in our experiment. The goal here was to deduce some general property to
construct a good meta-model. If we take a look at a generalizable meta-model,
we identi�ed two meta-model architectures that proved to be suitable on all
datasets. These two architectures, shown in Table 6, do not always achieve the
best performance, but they always improved attack performance, on all datasets
and all ensemble sizes. These appear to be the only two-layer architectures. We
interpret this fact as a consenquence of the over�tting phenomenon: more com-
plex meta-models often over�tted in our experiments. Especially on datasets
that do not include desynchronization, where we can clearly see that increasing
the number of layers in the meta-models degrades the attack performance (Fig-
ure 6). Therefore, a small architecture with few layers is more appropriate for
the meta-model.

(a) AES HD. (b) ASCADV 0d.

Fig. 6: Impact of the number of layers on meta-model performance.

Table 6: Meta-models that always improve attack performance.
Hyperparameter Architecture 1 Architecture 2

Number of layers 2 2

Number of neurons 600 300

Activation elu tanh

Epoch Early stopping : Val loss Patience 20

Learning Rate 0.0001

Mini Batch 100

Optimizer RMSprop

Loss Categorical Crossentropy : metric accuracy



18 D. Llavata et al.

5 Conclusion and Future works

In this work, we propose a new study of Deep Ensemble Learning in the side-
channel context. We extend the preliminary results of Perin et al. [20] who used
bagging to aggregate the predictions of the weak models and we propose to use
stacking as a more suitable choice in the aggregation method. Our experimental
exploration on several publicly available datasets highlights some of the limita-
tions of the bagging process and shows that stacking can signi�cantly improve
attack performance while providing a �exible solution to address these limita-
tions. During our experiments, we observed that stacking ensemble can provide
with less e�ort attack performance similar to those of rigorously hyperparameter-
ized architectures. Therefore, stacking may be considered as a suitable approach
to avoid the need for the security evaluator to �nely tune the neural network
architecture. However, stacking ensemble has proven to be extremely sensitive
to over�tting, making it crucial to avoid using overly complex meta-models. In
our experiments, two-layer meta-models have always succeeded in improving at-
tack performance. We also noticed that the improvement in attack performance
was not correlated with the number of weak models in the ensemble. Indeed,
we often found similar improvements across all ensemble sizes. Thus, since the
complexity increases with the addition of weak models, we recommend using an
ensemble with few weak models.

Future works. In our experimental campaign, our simplest meta-models con-
sisted of two layers of 100 neurons. We think it would be interesting to fur-
ther simplify the networks by experimenting with single-layer architectures with
even fewer neurons. We also plan to extend this work by using a small CNN as
a meta-model to take advantage of the concatenation in depth-wise sequence.
Moreover, it would be interesting to study the applicability of the boosting en-
semble methodology in SCA.

Acknowledgements

This work was �nancially supported by the Defense Innovation Agency (AID)
from the french ministry of armed forces.

References

1. Acharya, R.Y., Ganji, F., Forte, D.: Information theory-based evolution of neural
networks for side-channel analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems pp. 401�437 (2023)

2. Ali, K.M., Pazzani, M.J.: On the link between error correlation and error reduction
in decision tree ensembles (1995)

3. Benadjila, R., Prou�, E., Strullu, R., Cagli, E., Dumas, C.: Deep learning for side-
channel analysis and introduction to ascad database. Journal of Cryptographic
Engineering 10(2), 163�188 (2020)



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 19

4. Breiman, L.: Bagging predictors. Machine learning 24, 123�140 (1996)
5. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.

In: Cryptographic Hardware and Embedded Systems-CHES 2004: 6th Interna-
tional Workshop Cambridge, MA, USA, August 11-13, 2004. Proceedings 6. pp.
16�29. Springer (2004)

6. Cagli, E., Dumas, C., Prou�, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures: Pro�ling attacks without pre-
processing. In: Cryptographic Hardware and Embedded Systems�CHES 2017: 19th
International Conference, Taipei, Taiwan, September 25-28, 2017, Proceedings. pp.
45�68. Springer (2017)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Cryptographic Hardware
and Embedded Systems-CHES 2002: 4th International Workshop Redwood Shores,
CA, USA, August 13�15, 2002 Revised Papers 4. pp. 13�28. Springer (2003)

8. Destouet, G., Dumas, C., Frassati, A., Perrier, V.: Wavelet scattering transform
and ensemble methods for side-channel analysis. In: Constructive Side-Channel
Analysis and Secure Design: 11th International Workshop, COSADE 2020, Lugano,
Switzerland, April 1�3, 2020, Revised Selected Papers 11. pp. 71�89. Springer
(2021)

9. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of computer and system sciences 55(1),
119�139 (1997)

10. Gandol�, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: Concrete results.
In: Cryptographic Hardware and Embedded Systems�CHES 2001: Third Inter-
national Workshop Paris, France, May 14�16, 2001 Proceedings 3. pp. 251�261.
Springer (2001)

11. Gao, F., Mao, B., Wu, L., Wang, Z., Mu, D., Hu, W.: Leveraging ensemble learning
for side channel analysis on masked aes. In: 2021 7th International Conference on
Computer and Communications (ICCC). pp. 267�271. IEEE (2021)

12. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE transactions on pat-
tern analysis and machine intelligence 12(10), 993�1001 (1990)

13. Hernández-Lobato, D., Martínez-Muñoz, G., Suárez, A.: How large should ensem-
bles of classi�ers be? Pattern Recognition 46(5), 1323�1336 (2013)

14. Heuser, A., Zohner, M.: Intelligent machine homicide: Breaking cryptographic de-
vices using support vector machines. In: Constructive Side-Channel Analysis and
Secure Design: Third International Workshop, COSADE 2012, Darmstadt, Ger-
many, May 3-4, 2012. Proceedings 3. pp. 249�264. Springer (2012)

15. Kim, J., Picek, S., Heuser, A., Bhasin, S., Hanjalic, A.: Make some noise. unleashing
the power of convolutional neural networks for pro�led side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Systems pp. 148�179
(2019)

16. Kocher, P., Ja�e, J., Jun, B.: Di�erential power analysis. In: Advances in Cryptol-
ogy�CRYPTO'99: 19th Annual International Cryptology Conference Santa Bar-
bara, California, USA, August 15�19, 1999 Proceedings 19. pp. 388�397. Springer
(1999)

17. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
a masked aes: Reaching the limit of side-channel attacks with a learning model.
Journal of Cryptographic Engineering 5, 123�139 (2015)

18. Maghrebi, H., Portigliatti, T., Prou�, E.: Breaking cryptographic implementations
using deep learning techniques. In: Security, Privacy, and Applied Cryptography
Engineering: 6th International Conference, SPACE 2016, Hyderabad, India, De-
cember 14-18, 2016, Proceedings 6. pp. 3�26. Springer (2016)



20 D. Llavata et al.

19. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. Journal of
arti�cial intelligence research 11, 169�198 (1999)

20. Perin, G., Chmielewski, �., Picek, S.: Strength in numbers: Improving general-
ization with ensembles in machine learning-based pro�led side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded Systems pp. 337�
364 (2020)

21. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class im-
balance and con�icting metrics with machine learning for side-channel evaluations.
IACR Transactions on Cryptographic Hardware and Embedded Systems 2019(1),
1�29 (2019)

22. Rijsdijk, J., Wu, L., Perin, G., Picek, S.: Reinforcement learning for hyperparam-
eter tuning in deep learning-based side-channel analysis. IACR Transactions on
Cryptographic Hardware and Embedded Systems pp. 677�707 (2021)

23. Robissout, D., Bossuet, L., Habrard, A., Grosso, V.: Improving deep learning net-
works for pro�led side-channel analysis using performance improvement techniques.
ACM Journal on Emerging Technologies in Computing Systems (JETC) 17(3), 1�
30 (2021)

24. Standaert, F.X., Malkin, T.G., Yung, M.: A uni�ed framework for the analysis
of side-channel key recovery attacks. In: Advances in Cryptology-EUROCRYPT
2009: 28th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Cologne, Germany, April 26-30, 2009. Proceedings 28.
pp. 443�461. Springer (2009)

25. Wolpert, D.H.: Stacked generalization. Neural networks 5(2), 241�259 (1992)
26. Wu, L., Perin, G., Picek, S.: I choose you: Automated hyperparameter tuning for

deep learning-based side-channel analysis. IEEE Transactions on Emerging Topics
in Computing (2022)

27. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: Methodology for e�cient cnn archi-
tectures in pro�ling attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems pp. 1�36 (2020)

28. Zaid, G., Bossuet, L., Habrard, A., Venelli, A.: E�ciency through diversity in
ensemble models applied to side-channel attacks:�a case study on public-key
algorithms�. IACR Transactions on Cryptographic Hardware and Embedded Sys-
tems pp. 60�96 (2021)



Deep Stacking Ensemble Learning applied to Pro�ling Side-Channel Attacks 21

A Weak models

Hyperparameter min max step

Learning Rate 0.0001 0.001 0.0001

Mini Batch 100 1000 100

Nb conv layers 2 8 1

Filters 8 32 4

Kernel size 10 20 2

Stride 5 10 5

Nb FC layers 2 3 1

Nb FC neurons 100 1000 100

Activations Relu, Elu, Selu, Gelu, Tanh

(a) Search space for ASCADF 0d / AES
HD CNN hyperparameters.

Fixed Conv part

Conv(32, 1) , AveragePooling(2, 2)

Conv(64, 25), AveragePooling(25, 25)

Conv(128, 3), AveragePooling(4, 4)

Random Dense part

Hyperparameter min max step

Learning Rate 0.0001 0.001 0.0001

Mini Batch 100 1000 100

Nb FC layers 2 4 1

Nb FC neurons 500 4000 500

Activations Relu, Elu, Selu, Gelu, Tanh

(b) Search space for ASCADV 50d / AS-
CADV 100d CNN hyperparameters.

Hyperparameter min max step

Learning Rate 0.0001 0.001 0.0001

Mini Batch 100 1000 100

Kernel size 16 128 16

Nb conv layers 1 4 1

Nb FC layers 1 3 1

Nb FC neurons 500 4000 500

Filters 1

Strides 2

Activations Relu, Elu, Selu, Gelu, Tanh

(c) Search space ASCADV 50d full random
CNN.

Hyperparameter min max step

Learning Rate 0.0001 0.001 0.0001

Mini Batch 50 1000 100

Nb FC layers 2 8 1

Nb FC neurons 100 1000 100

Dropout 0.0 0.4 0.1

Activations Relu, Elu, Selu, Gelu, Tanh

(d) Search space for ASCADF 0d/ AES
HD/ ASCADV 0d MLP hyperparameters.

Fig. 7: Search space for weak models.


	Deep Stacking Ensemble Learning applied to Profiling Side-Channel Attacks

