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Abstract—In the smart cloud environment, distributed learning
faces privacy and straggler issues. Lagrange coded computing
can alleviate these concerns to some extent. However, when the
number of honest but curious nodes exceeds a certain threshold,
or there exists outside eavesdroppers, the privacy of the system
will be threatened. To address this challenge, we propose a
differentially private Lagrange encoding distributed learning
framework, named DPLE. Firstly, we utilize Lagrange encoding
to hide the raw data and inject redundancy, thereby enhancing
privacy protection and resilience against stragglers. Additionally,
artificial noise will be injected into local computation results,
further securing sensitive information against leakage. Moreover,
we conduct theoretical analyses to determine the variance of
artificial noise required to achieve a certain level of privacy
protection within this framework. Through experiments, we
validate the effectiveness of the proposed framework and assess
the influence of various system parameter settings on accuracy.

Index Terms—Lagrange coded computing, differential privacy,
distributed learning, artificial noise

I. INTRODUCTION

Cloud computing infrastructure enables distributed machine
learning to effectively manage extensive datasets and complex
models [1]. However, several unresolved challenges crucial
for advancing distributed learning in smart cloud environments
persist, including issues related to performance, fault tolerance,
portability, and privacy concerns [2]. Our paper primarily
focuses on the privacy issues associated with distributed learn-
ing. This is particularly pertinent in cloud environments where
physical infrastructure is shared, with multiple users utilizing
the same host and being partitioned by virtual machines [3].
While this approach facilitates scalability in cloud systems, it
also introduces significant security and privacy risks. When
semi-honest nodes attempt to acquire sensitive information or
adversaries and aim to eavesdrop on the training outcomes, the
privacy of the system will be compromised. In response to the
aforementioned privacy threats, cryptographic techniques such
as homomorphic encryption [4] and secure multiparty compu-
tation [5] have been widely employed. However, cryptographic
techniques require significant computational overhead.

Recently, the combination of coding techniques and dis-
tributed learning has gained increasing attention as a way
to safeguard the system’s privacy [6]. For example, Coded
Federated Learning (CFL) leverages coding technique and

federated learning to mitigate privacy and straggler issues [7].
Additionally, Lagrange coded computing (LCC) utilizes La-
grange interpolation polynomials to encode datasets, ensuring
an optimal balance among privacy, security, and resiliency [8].
However, LCC is limited to handling multivariate polynomial
functions of the input dataset. To address this limitation,
CodedPrivateML [3] enhances LCC by integrating an approx-
imation of the sigmoid function, thereby facilitating logistic
regression within the Lagrange coded computing framework.
Nonetheless, relying solely on Lagrange interpolation poly-
nomials offers limited protection for system privacy. When
honest-but-curious nodes exceed the system’s capacity or when
adversaries attempt to eavesdrop on the system, the privacy of
the system remains vulnerable.

One effective way to enhance the system’s privacy pro-
tection is by introducing artificial noise, with differential
privacy (DP) being a typical example. Differential privacy [9]
offers statistical information without revealing individual data,
thereby ensuring the protection of system privacy. Numerous
studies have already delved into the application of differential
privacy in distributed learning. For instance, in [10], DP is
seamlessly integrated into federated learning, and the required
variance of artificial noise for a specific privacy protection
level is quantitatively analyzed. Additionally, [11] proposes
a privacy-preserving method for learning personalized mod-
els on distributed data while ensuring differential privacy.
Moreover, in [12], the authors combine DP and homomorphic
encryption in federated learning using a novel stochastic
quantization operator. In this paper, we further extend the
application of differential privacy by deploying it into the LCC
framework to enhance the privacy protection level.

We focus on a scenario where a master exclusively pos-
sesses the dataset and aims to distribute computationally
intensive tasks to multiple workers while preserving privacy.
To achieve this, we delve into coding and differential privacy.
Specifically, we utilize Lagrange interpolation polynomials
to encode the dataset, thereby facilitating privacy protection
and injecting redundancy. Besides, after local computation,
artificial noise will be introduced to local results to further
safeguard the system’s privacy. This system not only combats
eavesdropping concerns from honest but curious nodes and



Fig. 1. The scenario of DPLE.

outside adversaries but also mitigates the straggler effect to
some extent. Additionally, we provide the variance of the noise
required for specific privacy protection levels and validate the
system’s accuracy through experiments.

II. SYSTEM ARCHITECTURE

As illustrated in Fig. 1, we consider a master-worker ar-
chitecture, comprising a master and N workers. The master
aims to train a logistic regression model by distributing
computationally intensive tasks to multiple workers without
compromising privacy. However, during the training process,
there may be instances of honest but curious workers at-
tempting to obtain sensitive information illegally, stragglers
unable to complete computations in a timely manner, and
outside adversaries eavesdropping on the training results. To
ensure the privacy of the system, we propose a differentially
private Lagrange encoding framework, namely DPLE. Within
this framework, the master possesses the dataset X ∈ Rm×d
along with the label vector y ∈ {0, 1}m×1, where m and d
denote the number of data items and the number of features,
respectively. The model weight w is derived by minimizing
the cross-entropy loss function L(w), with its gradient denoted
as ∇L(w) = 1

mX>(S(X · w) − y). Here, S(·) represents
the element-wise application of the sigmoid function. Then,
in the t-th iteration, the updated weight is represented as
w(t+1) = w(t) − η

mX>(S(Xw(t)) − y), where η denotes
the learning rate.

The system architecture of DPLE is presented in Fig. 2.
Before the master distributes the data to the workers for
computation, it needs to encode the data using Lagrange in-
terpolation polynomials. Therefore, the master first normalize
the dataset X into a normalized dataset X̄ with zero mean and
unit variance, and then X̄ is evenly partitioned into K shares
X̄ = [X̄T

1 , . . . , X̄
T
K ]
T with X̄i ∈ R

m
K×d
q (i = 1, . . . ,K) being

the i-th share. We assume that the number of entries m is
evenly divisible by K. If not, any remaining entries can be
disregarded. Then, the encoded dataset X̂i (i = 1, . . . , N)
can be represented as X̂i = gx(mi) with gx(β) being

gx(β) =

K∑
i=1

X̄i

∏
k 6=i

β − uk
ui − uk

+

K+T∑
i=K+1

Zi
∏
k 6=i

β − uk
ui − uk

. (1)

Fig. 2. System architecture of DPLE.

In Eq.(1), Zi∈Rqm
K×d is the redundancy matrix with elements

uniformly distributed within the range [−θ, θ] for some θ∈R.
T represents the maximum number of colluding nodes the
system can tolerate without compromising privacy. Addition-
ally, u1,. . ., uK+T denote (K+T ) distinct numbers chosen
by the master, and {mi}Ni=1 represent another N distinct
numbers selected by the master, which are different from
u1,. . ., uK+T . That is {uα}K+T

α=1 ∩ {mi}Ni=1 = ∅. Similarly,
the master employs the identical set of {mi}Ni=1 for encoding
the weight vector w(t), and the i-th encoded weight vector is
ŵ

(t)
i = gw(mi) with gw(mi) being

gw(β)=

K∑
i=1

w(t)
∏
k 6=i

β − uk
ui − uk

+

K+T∑
i=K+1

vi
∏
k 6=i

β − uk
ui − uk

. (2)

The entries within vi ∈ Rd×rq are randomly chosen with
uniform distribution from the range [−ξ, ξ] for some ξ ∈ R.
To achieve more accurate results for the master’s recovery,
it is suggested that {uα} and {mi} are close to each other
and min{mi}<{uα}K+T

α=1 <max{mi} for i = 1, . . . , N . It is
evident that both gx(β) and gw(β) have a degree of (K+T−1).

Following the encoding process, the master distributes the
encoded dataset X̂i and weight vector ŵ

(t)
i to the i-th worker

for computation. Given that Lagrange coding is intended for
polynomial computation, we opt for an r-th order approx-
imation of the sigmoid function Ŝ(z) =

∑r
i=0 aiz

i with ai
being estimated according to the least squares estimation of
the sigmoid function. Then, the i-th (i = 1, . . . , N ) worker
computes function f locally with f being

f(X̂i, ŵ
(t)
i ) = X̂>i · Ŝ(X̂i · ŵ(t)

i ). (3)
Then, we can deduce that the degree of f(·) is (2r+ 1),
indicating that a total of (2r + 1) points are required to
reconstruct f(·). In the t-th iteration, once the i-th worker
completes computation, the computed result f(X̂i, ŵ

(t)
i ) is

added with artificial noise n
(t)
i ∈Rd×1

q by worker i to satisfy
DP. Consequently, the perturbed result f̃ (t)

i is expressed as

f̃
(t)
i = X̂>i · Ŝ(X̂i · ŵ(t)

i ) + n
(t)
i . (4)

Then, the i-th worker sends the noised result f̃ (t)
i to the master.

After receiving f̃ (t)
i , the master utilizes the received results

f̃
(t)
i (i ∈ |D|) to construct a new polynomial h̃(β) at the t-th

iteration with D representing the set of the first |D|= (2r+
1)(K+T−1)+1 workers who have completed the computing
tasks. It should be noted that N≥(2r+1)(K+T−1)+Ss+1



with Ss being the number of stragglers the system can with-
stand. The new polynomial h̃(β) is constructed by executing
Lagrange interpolation on the pairs (mi, h̃(mi)) with

h̃(mi) , f̃
(t)
i = f(X̂i, ŵ

(t)
i ) + n

(t)
i . (5)

Hence the function values at uα (α = 1, . . . ,K) can be
expressed as

h̃(uα) =
∑
i∈D

f̃
(t)
i ·

∏
j∈D\{i}

uα −mj

mi −mj
. (6)

Then, substituting Eq. (4) into Eq. (6), we can get

h̃(uα) =
∑
i∈D

[X̂>i Ŝ(X̂i · ŵ(t)
i ) + n

(t)
i ] ·

∏
j∈D\{i}

uα −mj

mi −mj
(7)

And we define the equivalent noise ñ
(t)
α (α=1, . . . ,K) as

ñ(t)
α ,

∑
i∈D

n
(t)
i ·

∏
j∈D\{i}

uα −mj

mi −mj
. (8)

Then we know
h̃(uα) = h(uα) + ñ(t)

α , (9)

where

h(uα) =
∑
i∈D

f(X̂i, ŵ
(t)
i ) ·

∏
j∈D\{i}

uα −mj

mi −mj
. (10)

After obtaining the function value of h̃(uα) (α = 1, . . . ,K),
the master aggregates the K decoded results to acquire

K∑
α=1

h̃(uα)=

K∑
α=1

[f(X̄α,w
(t))+ñ(t)

α ], (11)

where
K∑
α=1

f(X̄α,w
(t)) = X̄>Ŝ(X̄ · w(t)). Next, the master

updates the gradient based on

w(t+1) = w(t)− η

m
{X̄>[(Ŝ(X̄·w(t))−y)]+

K∑
α=1

ñ(t)
α }. (12)

This can alternatively be written as

w(t+1) = w(t) − η

m
[

K∑
α=1

h̃(uα)− X̄>y]. (13)

III. ANALYSIS OF ARTIFICIAL NOISE VARIANCE

We now discuss the requirements that the variance of the
artificial noise n

(t)
i added by the i-th worker needs to satisfy

to attain a specific level of privacy protection. We consider the
situation where the added artificial noise follows a Gaussian
distribution. Firstly, the definition of differential privacy is
provided as follows:

Definition 1 ((ε, δ)-DP). A randomized mechanism M
operating on a domain N is said to be (ε, δ)-differentially
private if for any two adjacent databases D, D

′ ∈ N, and
∀S ⊆ Range(M):

Pr(M(D) ∈ S) ≤ eε Pr(M(D
′
) ∈ S) + δ. (14)

The Gaussian mechanism of differential privacy is satisfied
whenM(D) = L(D)+n with n following Gaussian distribu-
tion N(0, σ2) with mean 0 and variance σ2. To ensure thatM
adheres to (ε, δ)-DP, it is required that σ2 ≥ 2 ln(1.25/δ)∆2

Gau
ε2 ,

Fig. 3. The impact of different privacy budgets on accuracy.

where ∆Gau denotes the sensitivity of the Gaussian mecha-
nism, calculated as ∆Gau =max

D,D′
‖L(D′)− L(D)‖2.

For the i-th worker in the t-th iteration, we define a matrix
R(t),i , X̂>i � (1d · [Ŝ(X̂i · ŵ(t)

i )]
>

), where � denotes the
Hadamard product and 1d represents a column vector with all
d elements being 1. Then we can derive that f(X̂i, ŵ

(t)
i ) =∑m/K

ς=1 R
(t),i
ς with R

(t),i
ς being the ς-th column of R(t),i. We

assume that R
(t),i
ς is bounded by ||R(t),i

ς ||2 ≤ B
(t),i
2 . Then,

the sensitivity of the i-th worker can be written as ∆Gau =

max
X̂i,X̂

′
i

||f(X̂i, ŵ
(t)
i ) − f(X̂

′

i, ŵ
(t)
i )||2, where f(X̂i, ŵ

(t)
i ) and

f(X̂
′

i, ŵ
(t)
i ) respectively represent the function value for the

neighboring dataset X̂i and X̂
′

i at the t-th iteration. According
to Eq. (3), we know that a single data change can cause the
computed result f(X̂i, ŵ

(t)
i ) to vary by up to 2B

(t),i
2 , which

means ∆Gau = 2B
(t),i
2 . Then, for the i-th worker, in the t-th

iteration, if the noise n
(t)
i ∼N (0, σ2

(t),i), the (εi, δi)-DP can
be guaranteed when σ(t),i satisfies

σ(t),i ≥
√

2 ln(1.25/δi) · 2B(t),i
2 /εi. (15)

IV. EXPERIMENT

In this section, we demonstrate the effectiveness of the
proposed DPLE framework through experimental verification.
We conduct logistic regression training using the MNIST and
FashionMNIST datasets. For the MNIST dataset, we select a
total of 12,700 samples from two classes with labels 1 and
2 for training. As for the FashionMNIST dataset, we choose
two classes, ’Pullover’ and ’Dress’, for binary classification
training. Each sample in these two datasets has 28× 28 + 1=
785 features, where the additional feature count is due to the
inclusion of a bias term. The privacy budget for each worker
is uniformly expressed as ε, and the relaxation term δ is set
to 0.01.

Fig. 3 presents the training accuracy of the Fashion-MNIST
dataset under varying privacy budgets while keeping other
parameters fixed. The initial parameter configuration here is



Fig. 4. The impact of different privacy budgets on accuracy (MNIST).

Fig. 5. The influence of different dataset partitions on Accuracy (Fashion-
MNIST).

N = 50, K = 5, and T = 4. Since it can be calculate that
|D|= 3× (5+4−1)+1 = 25, then we know the system can
accommodate N − |D| = 25 stragglers. It can be observed
from Fig. 3 that as the privacy budget decreases, the training
accuracy of the dataset gradually decreases, while the privacy
protection level of the system gradually increases. This trend
arises because a higher privacy protection level necessitates
greater artificial noise variance, which consequently affects the
accuracy of the system’s training. Thus, there exists a trade-off
between the privacy protection level and the training accuracy.

In Fig. 4, we present the training accuracy of the MNIST
dataset under different privacy budgets. The parameter config-
uration here is N = 50, K = 5, and T = 2. It can be observed
that the training accuracy gradually increases as the privacy
budget increases; however, a larger privacy budget corresponds
to a lower level of privacy protection. This observation is
consistent with the analysis presented in Fig. 3.

Fig. 5 demonstrates how different dataset partitions affect
training accuracy. Here, the parameter settings are N = 50,
T = 4, and ε = 5. It’s noticeable that as the number of dataset

partitions increases, training accuracy gradually declines. This
is related to the fact that fewer dataset partitions allow each
encoded dataset to contain richer information. While fewer
partitions are beneficial for training accuracy, too few may im-
pose excessive computational burdens on individual workers.
Therefore, it is necessary to select an appropriate number of
dataset partitions to balance the computation load of individual
workers and the overall training accuracy.

V. CONCLUSION
To address the threats posed by an excessive number of

honest but curious nodes and external eavesdroppers in the
LCC framework, we introduced differential privacy on top of
the existing LCC framework. Firstly, we employed Lagrange
interpolation polynomials for encoding to safeguard sensitive
data from potential leaks. Then we introduced artificial noise
to further enhance the protection of sensitive information
within the LCC framework. Subsequently, we analyzed the
required magnitude of noise variance for achieving specific
privacy protection levels. Through experimentation, we vali-
dated the effectiveness of our proposed solution and explored
how various system parameters affect training accuracy.
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