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Abstract. Nonlinear Schrodinger equation plays significant role in op-
tical soliton communication. To improve transmission speed in optical
soliton communications, high-power and ultra-short optical pulses should
be used. And generalized third order nonlinear Schrödinger equation is
used in optical fibers for describing ultra-short pulses. In this study, we
utilized generalized Riccati mapping method to get numerous kinds of
optical solitons of Hirota equation which is special generalized nonlinear
Schrödinger equation of third order.
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1 Introduction

Solitary waves, which entered the scientific literature with the studies of John
Scott Russell in 1834, were not paid much attention until the 1960s. The studies
in the Los Alamos National Laboratory of Norman J. Zabusky and Martin David
Kruskal increased the importance of solitary waves. Kruskal and Zabusky show
that the Fermi-Pasta-Ulam-Tsingou model associated with the propagation of
equal mass-longitudinal waves by certain nonlinear springs in a one-dimensional
lattice pairs are modeled by the KdV equation. Kruskal and Zabusky discov-
ered that solitary waves would emerge from collision having the same shape and
speeds which they entered when experimenting with the numerical solution of the
KdV equation. They called these waves “solitons” which show particle behavior
like photon, proton. etc. In Greek, the suffıx ”on” means solitary. Mathemati-
cians often prefer to distinguish between solitons and solitary waves. They call
solitons solitary waves that do not deform after colliding with other solitons. In
this case, solitary waves are of a wider variety than solitons.The next question
is how are solitons formed? Solitons arise from the balance between the non-
linear term and the nonlinear term causing the dispersion in partial differential
equation. Does every partial differential equation form a soliton? KdV equation,
Boussinesq equation, Burgers equation, Sine-Gordon equation and Schrödinger
equation are the most famous partial differential equations that cause to soliton
solutions[1, 2].
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2 Governing Model

In this paper, our governing equation is a generalized third order Schrödinger
equation reads as

iUt + aUxx + bU |U |2 + icUxxx + ih|U |2Ux = 0, (1)

where x is propagation variable, t is time variable and a, b, c, h are real con-
stants. This equation is known as Hirota-type generalized nonlinear Schrödinger
equation. For the values c = h = 0 , it is reduced to the Schrödinger equation
and for the values a = b = 0 , the equation reduces to the modified KdV equation
[3, 6].

3 The Generalized Riccati Mapping Scheme

We give algorithm of the Generalized Riccati mapping method for seeking soliton
solution of nonlinear partial differential equations. Suppose general form of a
nonlinear PDE in two independent as

P (U,Ux, Ut, Uxx, ...) = 0, (2)

where the U(x, t) is unknown function and P polynomial function is including
with linear and nonlinear terms of the derivatives of the U(x, t). The basic steps
of this technique are given below:

Step 1: We suppose complex the traveling wave transform independent vari-
ables into the single variables as

U (x, t) = χ (ξ) eiR, χ (ξ) =

N∑
j=−N

Ajφ
j (ξ) (3)

where R = δx+ λt+ θ and ξ = kx+ ωt . χ and R are amplitude of wave profile
with the parameters δ, λ,and θ. ω is frequency and k is wave length. Aj are real
constants and φ(ξ) satisfies the below equation

φ′ (ξ) = p+ qφ (ξ) + rφ2 (ξ) (4)

where p, q, r are real constants.

Step 2: Integer N is get by the balancing higher order nonlinear and linear
terms on Eq. (3) and set of the coefficients Aj , k, ω, p, q and r are can be obtained.

Step 3: Inserting Eq. (3) with Eq. (4) into Eq.(2), choosing the coefficients
of dissimilar exponents of φj(ξ) to zero, get a set of equations, which is solved
by using software Mathematica, then the parameter values can be obtained.

Step 4: If we place these values in Eq. (3), then Eq. (2) has a solution [7, 10].
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4 Application of the method to Hirota NLSE

Since Eq. (1) is complex, when we inserting Eq. (3) into Eq. (1), we get real and
imaginary parts, respectively as(

−λ− aδ2 + cδ3
)
χ+ (b− hδ)χ3 +

(
ak2 − 3ck2δ

)
χ′′ = 0, (5)(

ω + 2akδ − 3ckδ2
)
χ′ + hkχ2χ′ + ck3χ(3) = 0. (6)

Integrating Eq. (6) once and taking integration constants zero, we have as

(ω + 2akδ − 3ckδ2)χ+
hk

3
χ3 + ck3χ′′ = 0. (7)

As it is seen Eq. (5) and (7) are similar. Thus, we get the following relations
between the coefficients

a = c (k + 3δ) , h =
3b

k + 3δ
, λ = −2ck2δ − 4ckδ2 − 2cδ3 − ω, (8)

By using homogenous balancing principle on Eq. (5), we get the solution as

χ (x, t) =
A−1

φ
+A1φ+A0 (9)

Substituting Eq. (9) and (4) into Eq. (7) and collecting the same powers of to
zero, our system of equations are consisting in parameters A−1, A0, A1, k, δ, ω,
a, c, h, p, q, r. Solving these system of equation with the aid of Mathematica, we
attain following cases: Case 1:

A−1 = 0, A0 =
i
√

3c
2 kq√
h

,A1 =
i
√
6ckr√
h

, ω = k
(
3cδ2 − 2aδ

)
+

ck3

2

(
q2 − 4pr

)
.

(10)
Case 2:

A−1 =
i
√
6ckp√
h

,A0 =
i
√

3
2ckq√
h

,A1 = 0, ω = k
(
3cδ2 − 2aδ

)
+

ck3

2

(
q2 − 4pr

)
.

(11)
Case 3:

A−1 =
i
√
6ckp√
h

,A0 = 0, A1 =
i
√
6ckr√
h

, ω = k
(
4ck2pr − 2aδ + 3cδ2

)
. (12)

For Case 1, the wave solutions of Eq. (1) in different soliton types are constructed
in the following types:

Set I: When q2 − 4p > 0and qr ̸= 0(pr ̸= 0),

U1 (ξ) = −
k
√

3c (q2 − 4pr) tanh
(

1
2

√
q2 − 4prξ

)
√
2h

ei(δx+λt+θ+π
2 ), (13)
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U2 (ξ) = −
k
√
3c (q2 − 4pr) coth

(
1
2

√
q2 − 4prξ

)
√
2h

ei(δx+λt+θ+π
2 ), (14)

U3 (ξ) = −
k
√

3c(q2−4pr)sech
(√

q2−4prξ
)(

sinh
(√

q2−4prξ
)
+i
)

√
2h

ei(δx+λt+θ+π
2 ), (15)

U4 (ξ) = −
k
√

3c(q2−4pr)csch
(√

q2−4prξ
)(

cosh
√

q2−4prξ±i
)

√
2h

ei(δx+λt+θ+π
2 ), (16)

U5 (ξ) = −
k
√

3c(q2−4pr)
(
1+tanh

(
1
4

√
q2−4prξ

)
±coth 1

4

√
q2−4prξ

)
2
√
2h

ei(δx+λt+θ+π
2 ), (17)

U6 (ξ) =

√
3ck

(√
(A2+B2)(q2−4pr)−A

√
q2−4pr cosh

(√
q2−4prξ

))
√
2h
(
A sinh

(√
q2−4prξ

)
+B

)
ei(δx+λt+θ+π

2 ), (18)

U7 (ξ) = −
√
3ck

(√
(B2−A2)(q2−4pr)+A

√
q2−4pr cosh

(√
q2−4prξ

))
√
2h
(
A sinh

(√
q2−4prξ

)
+B

)
ei(δx+λt+θ+π

2 ), (19)

where A ̸= 0 andB ̸= 0 are two reals and B2 −A2 > 0,

U8 (ξ) =

√
3c
2 k

(
4pr cosh( 1

2

√
q2−4prξ)√

q2−4pr sinh( 1
2

√
q2−4prξ)−q cosh( 1

2

√
q2−4prξ)

+q

)
√
h

ei(δx+λt+θ+π
2 ), (20)

U9 (ξ) =

√
3c
2 k

(
4pr sinh( 1

2

√
q2−4prξ)√

q2−4pr cosh( 1
2

√
q2−4prξ)−q sinh( 1

2

√
q2−4prξ)

+q

)
√
h

ei(δx+λt+θ+π
2 ), (21)

U10 (ξ) =

√
3c
2 k

(
q±

4pr cosh( 1
2

√
q2−4prξ)

∓q cosh(
√

q2−4prξ)+
√

q2−4pr(i±sinh(
√

q2−4prξ))

)
√
h

ei(δx+λt+θ+π
2 ), (22)
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U11 (ξ) =

√
3c
2 k

(
q+

4pr sinh( 1
2

√
q2−4prξ)√

q2−4pr cosh( 1
2

√
q2−4prξ)−q sinh( 1

2

√
q2−4prξ)

)
√
h

ei(δx+λt+θ+π
2 ), (23)

U12 (ξ) =

√
3c
2 k

(
q
√

q2−4pr cosh
(

1
2

√
q2−4prξ

)
−(q2−4pr) sinh

(
1
4

√
q2−4prξ

))
√
h
(√

q2−4pr cosh
(

1
2

√
q2−4prξ

)
−q sinh

(
1
2

√
q2−4prξ

))
ei(δx+λt+θ+π

2 ). (24)

Set II: When q2 − 4p < 0and qr ̸= 0(pr ̸= 0),

U13 (ξ) =
k
√
6cpr − 3cq2

2 tan
(

1
2

√
4pr − q2ξ

)
√
h

ei(δx+λt+θ+π
2 ), (25)

U14 (ξ) = −
k
√
6cpr − 3cq2

2 cot
(

1
2

√
4pr − q2ξ

)
√
h

ei(δx+λt+θ+π
2 ), (26)

U15 (ξ) =
k

√
6cpr− 3cq2

2

(
± sec

(√
4pr−q2ξ

)
+tan

(√
4pr−q2ξ

))
√
h

ei(δx+λt+θ+π
2 ), (27)

U16a (ξ) = −
k

√
6cpr− 3cq2

2 cot
(

1
2

√
4pr−q2ξ

)
√
h

ei(δx+λt+θ+π
2 ),

U16b (ξ) = −
k
√
6cpr − 3cq2

2 tan
(

1
2

√
4pr − q2ξ

)
√
h

ei(δx+λt+θ+π
2 ), (28)

U17 (ξ) = −
k
√

6cpr− 3cq
2

2
(
coth

(
1
4

√
4pr−q2ξ

)
−tan

(
1
4

√
4pr−q2ξ

))
2
√
h

ei(δx+λt+θ+π
2 ), (29)

U18 (ξ) = ±
√

3c
2 k

(√
(A2−B2)(q2−4pr)∓A

√
4pr−q2 cos

(√
4pr−q2ξ

))
√
h
(
A sinh

(√
4pr−q2(ξ)

)
+B

)
ei(δx+λt+θ+π

2 ), (30)

U19 (ξ) = −
√

3c
2 k

(√
(A2−B2)(q2−4pr)±A

√
4pr−q2 cos

(√
4pr−q2ξ

))
√
h
(
A sin

(√
4pr−q2ξ

)
+B

)
ei(δx+λt+θ+π

2 ), (31)

where A ̸= 0 andB ̸= 0 are two reals and A2 −B2 > 0,



6 Mustafa MIZRAK

U20 (ξ) =

√
3c
2 k

(
q+2qr−

4pr cos( 1
2

√
4pr−q2ξ)√

4pr−q2 sin( 1
2

√
4pr−q2ξ)+q cos( 1

2

√
4pr−q2ξ)

)
√
h

ei(δx+λt+θ+π
2 ), (32)

U21 (ξ) =

√
3c
2 k

(
q+2qr+

4pr sin( 1
2

√
4pr−q2ξ)√

4pr−q2 cos( 1
2

√
4pr−q2ξ)−q sin( 1

2

√
4pr−q2ξ)

)
√
h

ei(δx+λt+θ+π
2 ), (33)

U22 (ξ) =

√
3c
2 k

(
q−

4pr cos( 1
2

√
4pr−q2ξ)√

4pr−q2(±1+sin(
√

4pr−q2ξ))+q cos(
√

4pr−q2ξ)

)
√
h

ei(δx+λt+θ+π
2 ), (34)

U23 (ξ) =

√
3c
2 k

(
q±

4pr sin( 1
2

√
4pr−q2ξ)√

4pr−q2−q sin(
√

4pr−q2ξ)+
√

4pr−q2 cos( 1
2

√
4pr−q2ξ)

)
√
h

ei(δx+λt+θ+π
2 ), (35)

U24 (ξ) =

√
3c
2 k

(
q
√

4pr−q2 cos
(

1
2

√
4pr−q2ξ

)
+(4pr−q2) sin

(
1
2

√
4pr−q2ξ

))
√
h
(√

4pr−q2 cos
(

1
2

√
4pr−q2ξ

)
−q sin

(
1
2

√
4pr−q2ξ

))
ei(δx+λt+θ+π

2 ). (36)

Set III: When p = 0 and qr ̸= 0,

U25 (ξ) =

√
3c
2 kq

(
1− deqξ

)
√
h (1 + deqξ)

ei(δx+λt+θ+π
2 ), (37)

U26 (ξ) =

√
3c
2 k

(
−2rq

(
eqξ

)
+ qr

(
d+ eqξ

))
√
hr (d+ eqξ)

ei(δx+λt+θ+π
2 ), (38)

where d is an arbitrary constant.

U27 (ξ) =

√
3c
2 k

(
c1q − 2r + q2ξ

)
pepξ

√
h (c1 + qξ)

ei(δx+λt+θ+π
2 ). (39)

where c1 is an arbitrary constant.

Similarly, further results can be obtained from other cases in a more gener-
alized form.
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Conclusion

In this study, the Generalized Riccati mapping method has been successfully ap-
plied to find different types of soliton, solitary waves, trigonometric function and
other solutions of generalized third order Hirota equation. From this perspective,
we can say that the method we use is effective, precise, brief and applicable to
different nonlinear partial differential equations.
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