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Abstract. This article analyzes wave propagation isolation and vibra-
tion attenuation strategies of a beam coupled to piezoelectric sensors
periodically arranged in a given frequency band. Each piezo sensor is
connected to a resonant shunt circuit. The influence on the attenuation
band is due to a tunable shunt impedance associated with the corre-
sponding piezo. Hence, the piezo’s resonate at different and neighbouring
frequencies creates a tunable rainbow trap that can attenuate the energy
within a bandgap characteristic. The smart metastructure is modelled by
means of the spectral element method, which is a highly accurate method
with a low computational cost. Flexural wave propagation is obtained us-
ing the Transfer Matrix Method with the scatter diagram plot. Results
show the effect of broadband vibrations’ attenuation and propagating
waves isolation. Moreover, the spectral range over which attenuation is
achieved with the rainbow arrangements is on average wider than the
usual metamaterials configurations.

Keywords: Rainbow metamaterial · Smart metastructure · Spectral el-
ement method · Transfer matrix method.

1 Introduction

The smart materials, metamaterials and metastructure are structures increas-
ingly applied in advanced multi-physics systems. Piezoelectric materials (piezo)
coupled to beams, bars and plates are a structural example of smart materials
and metamaterials capable of exerting vibrational control and wave propaga-
tion. Such control depends on the operational configuration of the piezos that
can convert energy from the mechanical to electrical domain and vice versa,
that is, direct piezoelectric effect when the piezo converts the mechanical stress
into an electric field, and reverse piezoelectric effect when the piezo converts the
electric field into mechanical stress [11]. Each operational configuration allows
the evolution of these smart materials and metamaterials, where the potential

? Supported by organization FAPDF.



2 Braion B. Moura, Marcela R. Machado.

for on-demand ownership modulation can be achieved by passive, active or hy-
brid control [3, 8]. Active vibration control techniques are related to the reverse
piezoelectric effect, where they use an electrical energy source to increase the
mechanical energy needed by the system. Unlike active techniques, passive vi-
bration control techniques use the direct piezoelectric effect, making changes
in the electrical energy generated by the piezo to promote a specific dynamic
property in the structure, without relying on an external source of electrical
energy [6]. Hybrid vibration controls combine both active and passive control
techniques.

In the literature, several studies address the use of passive vibrational con-
trol with piezos connected to external circuits composed of passive components
such as resistors, inductors and capacitors [5]. These circuits, known by the
term shunt, began to be explored by Foward (1979) with the aim of inducing
vibrations. Later, Uchino and Ishii (1988) explored the direct piezoelectric effect,
dissipating the resulting electrical energy through an external resistance. Thus,
it was noticed that a significant variation in the structure’s damping factor oc-
curs when the value of the external resistance is changed. Hagood and Flotow
(1988) continued their study of the resistive shunt circuit, but added the induc-
tive element and realized the ability to adjust the attenuation effect in frequency,
similar to a dynamic vibration absorber. From there, other works explore various
combinations of circuits with resistive-inductive elements applied to vibrational
control, and these circuits became known by the term resonant shunt circuits [7,
15, 1, 17, 13].

The application of passive control with the resonant shunt circuit is com-
monly performed identically and periodically along a structure. However, some
works are using the resonant shunt circuit with the coupling configuration of
7 piezos tuned at different frequencies, but close to each other. This coupling
configuration is called a rainbow trap and can provide attenuation in a given
frequency band [2, 16, 9]. In this context, the present work aims to explore the
Frequency Response Function (FRF) and the Scatter Diagram (DD) of a beam
subjected to a vibrational control with resonant shunt in the rainbow trap config-
uration. With this, we intend to investigate the influence that each piezo causes
on the attenuation width. For this, numerical models are developed based on
SEM to perform accurate and computationally efficient analyses, without the
need for large discretizations. Furthermore, the Transfer Matrix Method (TMM)
is used to estimate the DD of the structure.

2 Smart Material Theory Background

The SEM is considered a very efficient method for representing different types
of geometries, boundary conditions and materials. Part of the efficiency of this
method is due to the fact that the shape functions of the elements are obtained
from the analytical solution of the governing differential equations and the so-
lution of the dynamical system written in the domain frequency [4]. The SEM
can represent the smart beam with the subdivision of beam (B) and beam-piezo-
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shunt (BPS) elements, as shown in Figure 1. Each element is composed of two
nodes and each node has three degrees of freedom based on the Euler-Bernoulli
theory [10].

(a)

(b)

Fig. 1: Representation: a) Spectral model of the structure; b) Free-body diagram.

For the beam element (B), Doyle (1997) reports that through the nodal
relations of force and displacement it is possible to express the spectral stiffness
matrix SB(ω) for the Euler-Bernoulli beam element. Similarly, Lee (2000) reports
how to obtain the spectral stiffness matrix SBP (ω) for the beam element with a
uniformly coupled piezo layer. However, the mathematical representation of the
beam-piezo element connected to a resonant shunt circuit (BPS) is given by the
following equation of motion

EIw′′′′ + ρAẅ + cAẇ + ΓV = −αü′b + βu′′′ + γẅ′′ + c1ẇ
′′ − c4u̇′b + Fw′′

+ p(x, t)

EAu′′b − ρAüb − cAu̇b + ΓV = −αẅ′ + βw′′′ − c4ẇ′ − Γ (x, t) (1)

Eτẋ+ CT
P V̇ = Ic(x, t)

where

α = (1/2)ρpAph, EI = EbIb + EpIp + (1/4)EpAph
2, c1 = (1/4)cpAph

2,

β = (1/2)EpAph, EA = EbAb + EpAp, c4 = (1/2)cpAph,

γ = (1/4)ρpAph
2, ρA = ρbAb + ρpAp, cA = cbAb + cpAp

where (′) denotes space derivative, (̇) denotes time derivative, and viscous damp-
ing coefficients is presented by c, and p(x, t) and τ(x, t) are the external forces
applied along the beam. The E, ρ, A and I are Young’s modulus, mass den-
sity, transverse area and moment of inertia, respectively. Furthermore, Ic is the
current, V is the voltage, CT

P is the piezoelectric capacitance, Γ is the coupling
term.
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The global stochastic electromechanical equation of motion coupling the
shunt circuit to the piezoelectric component is defined in terms of the spectral
stiffness matrix as [12],

SBP (ω)d− SSH(ω, θ)V (ω) = f(ω) (2)

iωSSH(ω, θ)d + iωCT
p V (ω) = Ic(ω)

where SSH(ω, θ) is the shunt circuit spectral matrix, θ represents the variability,
d is the generalized nodal displacement, f the generalized force. Similar to the
nodal relationship of beam and beam-piezo elements, the behavior of the piezo-
electric structure with the shunt circuit can be expressed with the equivalent
nodal displacements and forces [4, 10]. Therefore, SSH(ω, θ) can be assembled as
follows

SSH(ω, θ) = [Ne1W (x0, ω), 0,−Me1W (x0, ω),−Ne2W (x0, ω), 0,Me2W (x0, ω)]T

(3)
where

Ne1 = Ne2 =
k2ijiωZ

ELbpd31Ep

1 + iωCT
p Zeq

, Me1 = Me2 =
k2ijiωZ

ELhbpd31Ep

2 + 2iωCT
p Zeq

The nodal functions of the piezoelectric structure with shunt circuit are related
to the piezoelectric coupling coefficient kij , the width bp, and the piezoelectric
constant d31. Therefore, a general representation of the dynamic behaviour of
the unimorph beam is[

SBP (ω) + ω2S2
SH(θ)

1

iω + 1/Zeq(θ)

]
d(ω) = f(ω) (4)

where Zeq = −V/Ic is the general impedance given by the junction of the
admittance of the shunt circuit with the internal admittance of the piezoelec-
tric. The impedance for open circuit and short circuit cases is presented with
Zeq = iωCT

P and Zeq = 0, respectively. For the case of series resistive-inductive
(RL) shunt circuit, also known as resonant shunt circuit, we have the following
general impedance

Zeq =
R+ iωLn

1− ω2LnCT
P + iωRCT

P

(5)

where R is the resistor and Ln is the inductor. For experimental practical pur-
poses, the inductor component can be replaced by an antoniou circuit-type syn-
thetic inductor (shown in Figure 2), and its tuning frequency ωSH can be defined
by

ωSH =

√
1

LnCT
P

=
1√

(C1R1R3R4/R2)CT
P

(6)

Once the matrices of the spectral elements SB(ω), SBP (ω) and SSH(ω) are
defined, it is possible to obtain the global matrix by assembling the elements.
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Fig. 2: Topography of a piezo connected in RL shunt circuit;

This procedure is similar to the one used in the Finite Element Method. There-
fore, the global equation can be written so that

Sg(ω) = dg(ω) = fg(ω) (7)

where Sg(ω) is the assembled global dynamic stiffness matrix, dg is the global
spectral nodal DOFs vector, and fg is the global spectral nodal forces and mo-
ments vector.

3 Numerical results and discurssion

The smart beam structure analyzed is an aluminum beam with seven piezo-
electrics periodically coupled along the length L of the beam, as shown in Figure
3. The boundary condition used is free-free. A unit impulse is performed at the
penultimate degree of freedom (driving point).

Fig. 3: Smart beam illustration.

The implementation of the structure model via SEM and TMM was per-
formed using MatLab software. The properties and geometries considered for
the beam are Eb = 71GPa, ρb = 2700kg/m3, length L = 0.5m, width 12.7mm
e thickness hb = 2.286mm. For piezo were considered Ep = 64.9GPa, ρb =
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7600kg/m3, length L = 38.46mm, width 12.7mm e thickness hb = 0.762mm. In
addition, we considered the coupling coefficient k31 = 0, 31, piezoelectric con-
stant d31 = −175 m/V x10−12, dielectric constant βS

33 = −350 m/V x10−12 and
piezoelectric capacitance CT

P = 200 nF were considered. Regarding the resonant
shunt circuits, the components C1 = 100µF , R5 = 50Ω and R1 = R3 = R4 =
1 KΩ, were used for all circuits. However, different resistors R2 with values
90, 103, 117, 132, 148, 165 and 182 Ω were used in each circuit to tune the
frequencies 420, 450, 480, 510, 540, 570 and 600 Hz, respectively.

(a) (b)

Fig. 4: Electrical behavior of shunt circuits a) Impedance; b) Voltage.

Figure 4a shows the real part of the impedances of each resonant shunt circuit
and Figure 4b shows the relationship between the voltage generated by the piezo
and the voltage dissipated by each shunt circuit. These electrical relationships
associated with each piezo coupled to the beam, result in the vibrational effect
shown in Figure 5.

(a) (b)

Fig. 5: Vibrational comparison of the beam with 7 piezos connected in the short
circuit, periodic and rainbow trap configurations: a) FRF; b) Dispersion diagram;
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Figure 5a shows a vibrational comparison of Frequency Response Function
(FRF) between the short circuit (black line), periodic impedance RL (blue line)
and RL rainbow trap (red line) configurations. The same settings are used for
wavenumber comparison in the dispersion diagram of Figure 5b.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6: Frequency response function of smart beam in rainbow trap setting; a)
Short circuit; b) One connected shunt; c) Two connected shunt; d) Three con-
necteed shunt; e) Four connected shunt; f) Five connected shunt; g) Six coneected
shunt; h) Seven connected shunt;

In Figure 6, the FRF is presented in the GDL where the forcing takes place
(driving point) and in the opposite GDL where the forcing takes place (transfer
point). In this analysis, all seven piezos are coupled along the beam, but the
connection of the resonant shunt circuit happens in a restricted way in piezo to
piezo. In Figure 6b, a resonant shunt circuit tuned at 420 Hz is connected to
the first piezo. In Figure 6c a second resonant shunt circuit tuned at 450 Hz is
connected to the second piezo. Likewise, in Figures 6d to 6h there is an addition
of other resonant shunt circuits that are connected to each piezo, separately.
However, each shunt circuit is tuned incrementally in 30 Hz until reaching 600
Hz.

Analyzing all the letters in Figure 6, it is observed a vibrational effect caused
by the addition of each shunt circuit. This effect, known by the term band gap, is
characterized by the creation of a vibration isolation band, and as a new resonant
shunt circuit is added there is an increase in the band gap width. This effect can
also be observed with the dispersion diagram in Figure 7.

In Figure 7 the dispersion diagram corresponding to the addition of resonant
shunt circuits are presented. The yellow and green lines represent the positive
and negative propagation waves corresponding to the transverse displacement,
respectively. The red and blue lines represent the positive and negative prop-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7: Dispersion diagram of smart beam in rainbow trap setting; a) Short cir-
cuit; b) One connected shunt; c) Two connected shunt; d) Three connecteed
shunt; e) Four connected shunt; f) Five connected shunt; g) Six coneected shunt;
h) Seven connected shunt;

agation waves corresponding to the shunt circuit impedance, in that order. In
all the figures it is possible to notice changes in the waves exactly in the tuning
frequency.

4 Conclusion

This work approached an investigation on the band gap generation in a beam
with seven piezoelectrics coupled in periodicity. A SEM and TMM model was
used to implement the structure in MatLab software. A connection compari-
son of RL shunt circuits in short circuit, periodic impedance and rainbow trap
configuration was performed to investigate band gap generation. With this, it
was identified that the rainbow configuration is more susceptible to band gap
generation. Furthermore, it was noticed that as new shunt circuits are added to
the rainbow configuration, there is an increase in the isolation bandwidth (band
gap). In summary, although these vibrational effects have already been explored
in the literature, the present work demonstrated that the band gap width in the
rainbow configuration can also be efficiently observed by the scatter diagram.
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