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Abstract—Face anti-spoofing is a important task in
securing face recognition systems. In particular, domain
generalization for face anti-spoofing has been extensively
studied, with the goal of increasing robustness across dif-
ferent datasets and real-world scenarios. Existing methods
of domain generalization for face anti-spoofing require re-
providing prior information for each new dataset, limiting
their applicability. To address this limitation, we intro-
duce a simplified domain-generalized face anti-spoofing
(FAS) model that excels in diverse environments without
requiring domain-specific modifications. By prioritizing the
distinction between textural and non-facial features over
conventional facial attributes, our model adapts to various
unseen domains, leveraging dynamic kernels and style
transfer AdalN for domain-invariant feature extraction.
This approach mitigates the model’s vulnerability to envi-
ronmental and attack vector variations, enhancing its gen-
eralizability. Our comprehensive evaluation demonstrates
the model’s superior performance and adaptability, com-
paring favorably with state-of-the-art methods without the
need for predefined domain knowledge or specific attack
categorization. The model simplifies the binary classifica-
tion process between spoof and live samples, showcasing
its practical applicability in enhancing biometric security
systems. Through this work, we provide valuable insights
into domain generalization, offering considerations that are
instrumental for future research in face anti-spoofing.

Index Terms—Face anti-spoofing, Domain generalize,
Style

I. INTRODUCTION

In the digital security, face anti-spoofing (FAS) stands
as a critical barrier against fraudulent access attempts,
protecting biometric authentication systems from various
present attacks. Traditional approaches, however, often
grapple with domain-specific limitations, where the ef-
ficacy of an FAS model is tightly bound to the char-
acteristics of the dataset on which it was trained. This
dependency poses a significant challenge in real-world
applications, where the diversity of attack vectors and
environmental conditions cannot be exhaustively covered
by a single dataset. To address this challenge, our

work introduces a simple domain-generalized face anti-
spoofing model designed to operate effectively across
diverse conditions without the need for domain-specific
tuning. This emphasis on distinguishing between tex-
ture and facial information attributes over direct facial
characteristics in our model is motivated by the inherent
complexities within Face Anti-Spoofing FAS tasks. Both
authentic and spoofed samples display facial features,
posing a significant challenge in distinguishing them
based solely on facial data. The critical reliance on
facial information primarily arises in the initial stages,
particularly during face detection activities that lay the
groundwork for FAS processes. By focusing on the
underlying and external features, our model reduces its
susceptibility to variations in facial expressions enhanc-
ing its ability to adapt and perform across various unseen
domains

The main contribution of our approach is the innova-
tive use of dynamic kernels inspired by IADG [1], [2]
and style transfer AdalN inspired by SSAN [3] which
together facilitate the extraction of domain-invariant fea-
tures. Considering the advantages of these two method-
ologies, we have conceived an efficient network struc-
ture. By applying distinct normalization techniques to
facial features and texture features separately, our model
efficiently segregates these two fundamental aspects of
an image. This separation is crucial, as it allows for the
targeted minimization of domain-specific characteristics
that could otherwise lead to model underperformance on
novel datasets. Moreover, our model a slightly modified
version of employs supervised contrastive loss [4] and
smooth L1 loss to further refine the learning process. The
former enhances the model’s focus on texture features
that are indicative of spoofing attempts, while the latter
aims to minimize the influence of content features,
thereby improving the overall robustness and adaptability
of the model.



By combining the proposed methods, our domain-
agnostic face anti-spoofing approach achieves better per-
formance with existing domain generalization models.
Our contributions not only pave the way for more secure
and reliable biometric authentication systems but also
offer valuable insights into the field of domain general-
ization, setting a new benchmark for future research in
face anti-spoofing

II. RELATED WORK

A. Face Anti-Spoofing

Face anti-spoofing (FAS) has become a focal point
in diverse research domains, drawing considerable atten-
tion. Initially, researchers explored human behaviors and
predefined movements to discern between genuine and
spoofed facial presentations. This paved the way for the
utilization of handcrafted features such as LBP, HoG [5],
[6], SIFT [7], crucial for characterizing spoof patterns.
In recent years, deep neural networks have revolution-
ized FAS, offering a spectrum of methodologies from
classification-based approaches to regression-based and
generative models. This paradigm shift has empowered
FAS systems to discern intricate patterns and nuances
in facial data, enhancing their discriminative capabilities
against spoof attacks.

B. Domain-generalize FAS

Face anti-spoofing (FAS) has emerged as a prominent
research domain, driven by the pursuit of models capable
of generalizing effectively to previously unseen domains.
Various strategies have been employed to address this
challenge. Some approaches hinge on domain adaptation
techniques, which necessitate access to target domain
data for model adaptation [8]–[10]. In contrast, others
center around learning shared features across domains
through adversarial training and triplet loss mechanisms.
Notably, while conventional wisdom in the field often
regards domain-specific signals as detrimental to model
performance, our paper takes a pioneering approach by
advocating for the explicit utilization of such signals.
Through the innovative application of invariant risk
minimization in cross-domain FAS, we harness domain-
specific information to enhance model robustness and
adaptability.

III. METHOD

The FAS(Face Anti-Spoofing) task primarily involves
distinguishing and classifying information such as
texture, lighting, and patterns present in incoming
images, rather than focusing on facial features. This
is because in FAS, both spoof and live samples
contain facial characteristics, making it challenging
to differentiate them based on facial information.
The necessity for facial information arises in the
pre-processing stage, particularly in face detection

tasks preceding FAS. Therefore, it can be inferred
that in the FAS task, minimizing the influence of the
face and focusing more on other textures can yield
better results. Similarly, to minimize the influence of
the domain, it is necessary to have robust features
in other textures that are unaffected by the domain.
So in this section, we provide a detailed proposal for
the domain-generalized FAS task. We have developed
a mechanism by integrating Dynamic Kernel [2]
and Style Transfer [11], aimed at reducing instance-
specific features while extracting more generalized
characteristics. This approach establishes a foundation
for the FAS system to generalize across various
domains, rather than being confined to specific ones.
Subsections will be introduced the specific operational
mechanisms of the domain-generalized FAS system
utilizing Dynamic Kernel and Style Transfer

A. Seperate Content & Style

we denote the facial component as ”content,” while
referring to other elements essential for anti-spoofing
as ”style.” [3] Given the significant differences between
content and style features, attempting to discriminate
them simultaneously using the same kernel proves chal-
lenging. To address this, we employ distinct kernels and
normalization techniques within the backbone network
to seperate content and style features.

For content features, which remain consistent regard-
less of spoof or live labels, we utilize batch normaliza-
tion(BN) to ensure uniform feature extraction irrespec-
tive of the label. [1] Conversely, style features, which
vary across images, labels, and domains, are extracted
using instance normalization(IN) [1] to preserve the
distinct characteristics present in each image.

By initially separating features in this manner, we
aim to mitigate the influence of content information in
the FAS task, allowing for a more focused anti-spoofing
analysis

B. Instance & General Feature

Style refers to the distinctive characteristics present
in each domain, as well as the common attributes typ-
ically found in all spoof or live images. e.g, displays
may exhibit moiré patterns, whereas A4 documents
may not. However, both spoof domains may exhibit
color differences distinct from live images. Similarly,
different cameras may produce images with varying
atmospheres or textures depending on the camera’s filter.
These domain-specific differences in style are denoted
as instance styles, while the average style exhibited by
spoof or live images is categorized as general style.

By utilizing a Dynamic Kernel Generator(DKG), a
new kernel is created based on the feature input to the
Dynamic Kernel Module. In essence, this means that
instead of using the same kernel for all images, as in



Fig. 1. The overall network architecture comprises three main components. Firstly, a ResNet18 backbone extracts style information from the
input image. Subsequently, a Dynamic Kernel module is employed to identify instance features with domain-specific characteristics, ensuring
adaptability across domains. Finally, the AdalN module is utilized to remove mean and variance from the features, yielding general features
robust to domain variations.

conventional convolution layers to find common features,
we can employ uniquely different kernels for each image
style. This implies that each image can have its own
kernel tailored to its specific style, allowing us to capture
the instance style unique to each image. Removing this
instance information from the original style effectively
eliminates domain-specific details such as the type of
present attack or the camera used, facilitating a more
straightforward and accurate domain generalization pro-
cess. Consequently, this approach enables the classifi-
cation of spoof and live images based on information
present in all domains, eliminating the need to sepa-
rately consider network information for each domain or
contemplate the number of hyperplanes required for do-
main generalization The final step involves utilizing the
general features obtained by removing domain-specific
instance features from the style information extracted by
the backbone network for classification

C. Loss
In our original task, we utilize a Classification Loss

for distinguishing between Live and Spoof images. Ad-
ditionally, we incorporate a smooth L1 Loss to extract
consistent content information, namely facial features,
present in all images. Lastly, to obtain general features
that are similar across all styles and more unique instance
features, we employ the SupCon loss

1) Classification Loss: We differentiate between Live
and Spoof images using an MLP with the difference
between content and general features as input. The
reason for excluding content from the general features is
that the general features encompass common attributes
of the images, which may contain a slight mixture of
content information. Thus, by removing content infor-
mation from the general features, we aim to prevent the

Fig. 2. Diagram illustrating the structured features and losses utilized
at the end of the model architecture

classifier from being confused by the content informa-
tion. Furthermore, to prevent significant loss of general
feature information, we apply a λ weight to the content
information. We set the λ = 0.2 to balance the influence
of content and general features. The loss function Lcls

is defined as follows:

ŷ = σ(MLP (fgeneral − λfcontent))

Lcls = LBCE(ŷ, y)
(1)

2) Smooth L1 Loss: As mentioned earlier, the con-
tent feature represents facial information, which should
remain consistent for both spoof and live images. To
ensure this consistency across spoof and live samples,
we utilize the smooth L1 loss to enforce similarity in
the content features. This loss function enables us to
make the content features identical for both spoof and
live images The loss function LsmoothL1 is defined as
follows:

LsmoothL1 = ||Clive − Cspoof || (2)

3) Supervised Contrastive Loss: To enhance the dis-
tinguishability between instance and general features, It
is valuable to apply loss functions for style extraction as



a helpful hint, in addition to assigning the task solely
to dynamic kernels. Therefore, we utilize the super-
vised contrastive Loss [4] to encourage the extraction
of instance features that are distant from each other,
thereby promoting the discovery of more image-specific
styles. Meanwhile, for general features, we aim to extract
features that are close within the same label and distant
across different labels, ensuring the extraction of distinct
features suitable for classification. Thus, we adapt the
conventional Supervised Contrastive Loss to achieve this
objective

Let s ∈ S = {1, ..., N}, l ∈ L = {1, ..., N} denote the
index of a spoof and live samples. We define the general
feature as zg and the instance feature as zi Utilizing
these definitions, the equation for the short distance can
be formulated as follows

Dpos =
∑
s∈S

exp(zgs ·z
g
j(s)/τ)+

∑
l∈L

exp(zgs ·z
g
j(s)/τ) (3)

Subsequently, to facilitate the differentiation of general
features, we ensure that spoof and live features are
distanced from each other, while also arranging for
instance features to diverge across all labels.

Dneg =
∑
s∈S

∑
l∈L

exp(zgs · z
g
l /τ)+

∑
k∈2N

exp(zik · zij(k)/τ)

(4)
So The loss function Lsupcon is defined as follows:

Lsupcon = − 1

2N
log(

Dpositive

Dnegative
) (5)

The goal of this paper is to enhance the performance
of Face Anti-spoofing without being constrained by
domains, utilizing a simple structure. Previous works on
domain generalization tasks have employed the num-
ber of hyperplanes [12] as a hyperparameter or have
been limited to specific domains to achieve domain
generalization. However, we propose a novel approach
where any domain or image input is processed through
the Backbone, employing distinct normalization tech-
niques to separate Content and Style. Through the use
of Dynamic Kernel and AdalN, we identify features
that are invariant to the domain, thereby improving the
performance of Classification

IV. EXPERIMENTS

A. Datasets

To evaluate our proposed method’s effectiveness in
face anti-spoofing, we utilize four public datasets: CA-
SIA MFSD (C), Idiap Replay-Attack (I), MSU-MFSD
(M), and OULU NPU (O). These datasets encompass a
wide range of variations in capture devices, attack types,
illumination conditions, backgrounds, and demographic
diversity, presenting a comprehensive challenge for do-
main generalization. Adopting a leave-one-out testing

Algorithm 1 Domain-Agnostic Face Anti-spoofing
1: Input: Image I , Backbone Network B, Dynamic

Kernel D, Style Transfer AdaLN A
2: Output: Spoofing prediction P
3: procedure FAS(I,B,D,A)
4: C, S ← B(I) ▷ Extract Content and Style

features using Backbone
5: Cnorm ← Normalize(C)
6: Snorm ← Normalize(S)
7: Fvar ← D(Cnorm, Snorm) ▷ Apply DKG
8: Finv ← A(Snorm, Fvar) ▷ AdalN
9: P ← Classify(Finv) ▷ Invariant feature

classification
10: Compute Lsupcon using Snorm and F and Finv

▷ Supervised contrastive loss
11: Compute LsmoothL1 using C ▷ Smooth L1 loss
12: return P
13: end procedure

protocol, similar to previous domain generalization (DG)
FAS approaches, we train our model on three datasets
and test on the fourth to assess cross-domain general-
ization capabilities. e.g, under the protocol OCI→M,
we train on O, C, and I datasets and evaluate the
model’s performance on M, ensuring a rigorous and fair
comparison with existing methodologies in the field.

B. Experimental Settings

we use ResNet-18 backbone. For train we set the
number of epochs to 80. We adopt an SGD optimizer
with a learning rate of 1e-2 and reduce the learning
rate to 1e-5 through the cosine annealing scheduler. Our
input image size is set to 256×256, which cropped using
MTCNN and batch size is set to 64. For Content weight
λ set 0.2

C. Result

In the evaluation of our Face Anti-Spoofing (FAS)
model, we present a comparison against the state-of-
the-art (SOTA) methods across four testing domains. As
illustrated in Tab. I, our method outperforms the other
approaches in ICM to O task. For the ICM to O domain,
our model achieved an HTER of 8.60 and an AUC of
97.44, which signifies a notable improvement over SA-
FAS model. In the domain transfer from OCI to M,
While there was a slight decrease in the Half Total Error
Rate (HTER), there was a notable increase of 1% in the
AUC.

Upon examining both Fig. 3 and Tab. I, it becomes
apparent that our model achieves performance compa-
rable to, or slightly better than, existing state-of-the-art
methods. However, a distinct advantage of our approach
is the ability to perform binary classification without
the need to predetermine the number of domains or
deliberate on the types of present attacks. As depicted



Methods ICM to O OMI to C OCI to M OCM to I

HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑ HTER(%)↓ AUC(%)↑

MMD-AAE [13] 40.98 63.08 40.98 63.08 40.98 63.08 31.58 75.18
SSDG-M [14] 25.17 81.83 23.11 85.45 16.67 90.47 18.21 94.61

DR-MD-Net [15] 25.02 81.47 19.68 87.43 17.02 90.10 20.87 86.72
RFMeta [16] 16.45 91.16 20.27 88.16 13.89 93.98 17.30 90.48

NAS-FAS [17] 13.80 93.43 16.54 90.18 19.53 88.63 14.51 93.84
SDA [18] 23.10 84.30 24.50 84.40 15.40 91.80 15.60 90.10

DRDG [19] 15.63 91.75 19.05 88.79 12.43 95.81 15.56 91.79
ANRL [20] 15.67 91.90 17.83 89.26 10.83 96.75 16.03 91.04

SSAN-M [3] 19.51 88.17 16.47 90.81 10.42 94.76 14.00 94.58
SA-FAS [12] 10.00 96.23 8.78 95.37 5.95 96.55 6.58 97.54

Ours 8.60 97.44 12.56 94.44 8.81 97.55 6.51 96.84

TABLE I
COMPARISON TO THE SOTA FACE ANTI-SPOOFING MODELS ON FOUR TESTING DOMAINS.THE BOLD NUMBERS INDICATE THE BEST

PERFORMANCE.

Fig. 3. t-SNE results for OULU NPU (O) from ICM to O. Orange
represents spoof while blue represents live.

in Fig. 3, our model operates with a single line, which
significant hyperplane that primarily separates spoof and
live samples, simplifying the classification process.

In conclusion, the proposed model not only sets a
new insight which is not constrained by the quantity
of domains in FAS across multiple domains but also
exhibits substantial robust to domain shifts

1) Visualize: Fig. 4 serves as a demonstrative exam-
ple of how our model proficiently segregates content and
style. The visualization indicates that, rather than con-
centrating on the facial features universally, the model
is more attentive to the areas beyond the face where
the characteristics of Style manifest themselves. This
observation substantiates the effectiveness of applying
different normalization techniques in the discernment of
Style and Content, providing evidence that our approach
aids in the separation of these two fundamental aspects.

Fig. 4. Applying Grad-CAM to style features on an image sourced
from OULU NPU (O) test data to verify focus on non-facial content
information

The ability to focus on non-facial attributes suggests that
the model could be less susceptible to variations in facial
expression or geometry and more robust to changes in
environmental conditions, which are represented in the
Style features

V. CONCLUSION

In this work, we have proposed a face anti-spoofing
model that is not limited by the number of domains.
We have proposed a model that, diverging slightly from
conventional FAS tasks, diminishes the influence of
facial features and focuses more on the textures and
other intrinsic characteristics within the image, thereby
reducing the impact of facial attributes. Furthermore, we
have made concerted efforts to identify and eliminate
domain-specific features, reducing the domain influence.
Consequently, our model demonstrates strong perfor-
mance across testing domains with the use of a single
and simple hyperplane. we propose offers optimized
insights for the field of Domain Generalized Face Anti-
Spoofing (DG-FAS) [1], [3], [12]
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