
EasyChair Preprint
№ 14909

Online Rainbow Coloring in Graphs

Debasis Dwibedy, Rakesh Mohanty and Arun Khamari

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 16, 2024

Online Rainbow Coloring In Graphs⋆

Debasis Dwibedy1,2, Rakesh Mohanty1,3, and Arun Khamari1,4

1 Veer Surendra Sai University of Technology, Burla, 768018, Odisha, INDIA
2 debasis.dwibedy@gmail.com
3 rakesh.iitmphd@gmail.com
4 arunkhamari11@gmail.com

Abstract. Rainbow coloring is a special case of edge coloring, where
there must be atleast one path between every distinct pair of vertices that
consists of different color edges. Here, we may use the same color for the
adjacent edges of a graph representing two different paths from a single
vertex. In online rainbow coloring, we have no priori knowledge about the
vertices and edges of the graph, infact the edges are available one by one.
We have to color an edge as soon as it arrives and before the arrival of
the next edge. We can not revoke the colorinng decision once it is made.
According to our knowledge, there is no study of online rainbow coloring
for graphs. In this paper, we make a first attempt to propose an online
algorithm named Least Recently Used Color(LRUC) for online rainbow
coloring. We analyze the performance of LRUC through competitive
analysis. We show that LRUC is optimal for line graph, tree and star
graph. For 1-cyclic graph, LRUC is shown to be (2 − 2

n
))-competitive,

where n ≥ 4. We obtain the competitive ratios of n−1
3

and n−1 for wheel
and complete graphs respectively, where n is the number of vertices.

Keywords: Graph Coloring · Rainbow Coloring · Online Algorithm · Compet-
itive Analysis.

1 Introduction

1.1 Online Algorithm and Competitive analysis

A computational problem is online when the inputs of the problem are available
one by one in order, and immediate action is desired after the arrival of each
new input. The algorithm designed for an online computational problem is called
online algorithm(ONL) [1]. Here, the algorithm takes a sequence of decisions by
considering present and past inputs without knowledge of the future inputs.
Formally, suppose we have an input sequence I = ⟨i1, i2, . . . , in⟩ of finite size n,
where i1 is available at time t = 1 , i2 is available at t = 2 and so on. At any
given time t, the input instance It = ⟨it, it−1, . . . , i2, i1⟩ is known, and the input
instance It′ = ⟨it+1, it+2, . . . , in−1, in⟩ is unknown to the algorithm, where t′ > t.
Optimal offline algorithm(OPTL) is the one that has prior knowledge about the

⋆ Supported by Veer Surendra Sai University of Technology

2 D. Dwibedy et al.

entire input sequence and incurs minimum cost among all offline algorithms.
The performance of such an algorithm ONL is usually measured by the compet-
itive analysis method [2]. Here, the cost of algorithm ONL is compared against
the cost of the optimal offline algorithm OPTL. Let ONL(I) and OPTL(I) be
the cost obtained by ONL and OPTL respectively for processing any input se-
quence I. The algorithm ONL is s-competitive, for a positive number s(≥ 1)
if for all input sequences I, we have ONL(I) ≤ s · OPTL(I) + b, where b is a
positive constant.

1.2 Rainbow coloring

Rainbow coloring [3] of a non-trivial connected simple graph G(v, e) is a special
case of edge coloring where all vertices pair inG(v, e) must have at least 1 rainbow
path. A rainbow path exists between a pair of vertices if and only if all edges
in the path must have different colors. Formally, we define the rainbow coloring
of the edges in G(v, e) as c : e(G) → {1, 2, . . . , k}, where k ≥ 1. Here, c is a
rainbow k-coloring as k different colors are used. Our objective is to minimize
k while making G(v, e) rainbow-colored. The minimum value of k for G(v, e) is
the rainbow connection number rc(G) of G(v, e).

1.3 Offline rainbow coloring

The rainbow coloring is offline when the algorithm has complete knowledge of all
vertices and edges of the graph at the outset. All the components of the graph are
processed and colored simultaneously. Formally, suppose we have a non-trivial
connected graph G(v, e) with n vertices vi(i = 1, 2, . . . , n) and m edges ej(j =
1, 2, . . . ,m). All vi and ej are given as inputs to the offline algorithm in advance.
The algorithm processes the input graph as a whole and produces a rainbow
coloring for the graph. We denote rc(G) obtains by OPTL as rcOPTL(G). For a
simple illustration, we consider a cyclic graph with 3 vertices(C3) in Figure 1(a)
and present an offline rainbow coloring of C3.

1.4 Online Rainbow Coloring

In online rainbow coloring, the inputs are a non-trivial un-directed connected
simple graph G and a set of colors c. The output is a rainbow-colored graph,
where there must be at least one rainbow path between every distinct pair of ver-
tices. Our goal is to use minimum colors while making G rainbow-colored while
dealing with constraints such as the edges of G are unknown at the beginning
and are available one by one in order. The edge must be colored as soon as it
arrives and before the arrival of the next one. The coloring decision is irrevoca-
ble. The assumption is that the partial graph formed after the addition of each
new edge must be connected. For a simple illustration, we take C3 in Figure 1(b)
and present an online rainbow coloring of C3.

Online Rainbow Coloring In Graphs 3

Fig. 1. Rainbow Coloring of C3 (a)Offline (b) Online

1.5 Practical Application

The rainbow coloring mechanism forms a computational model in frequency
distribution among different links of a cellular network [4, 5]. When there is a
requirement to establish distinct communication channels between every pair
of mobile stations, rainbow coloring can be applied to minimize the number of
unique paths in the whole network.

1.6 Research motivation

Computing rc(G) of a non-trivial connected graph G(v, e) has been proved to
be NP-Hard [5]. It is non-trivial to decide whether a given coloring in an edge-
colored graph also holds the minimum colors to make the graph rainbow-colored
[5]. The problem becomes trivial when a fixed number of colors are used. How-
ever, the problem is NP-Complete if the coloring is arbitrary [6].

2 Background and Preliminaries

2.1 Definitions and Notations

– A graph is Connected if it has atleast one path between each vertices pair
[7].

– Non-trivial graph(G) is a simple connected graph with atleast two edges [7].
– Size of graph(m) denotes the total number of edges of the graph [7].
– Degree of a vertex(deg(v)) denotes the number of edges incident on v [7].
– We call a vertex vi as pendant, if deg(vi) = 1 [8].
– Diameter(diam(G)) of a graph is the largest distance between two vertices

vi, vk, which is maximum over the distances between all pairs of vertices in
a graph [7, 8].

– A graph G(v, e) is rainbow connected if there exists atleast one rainbow
path between every pair of vertices [3].

4 D. Dwibedy et al.

– Online Rainbow Connection Number(rconline(G)) denotes the number of col-
ors used through online rainbow coloring [3].

– A simple connected non-trivial graph is Complete (Kn) if all distinct pairs
of vertices are adjacent to each other [4, 7].

– Line graph(Ln) is a simple graph where the vertices are in one-one corre-
spondence with the edges. Here, vi is adjacent to vi−1 and vi+1, for each i,
2 ≤ i ≤ n− 1, where, v1 and vn are adjacent to only v2 and vn−1 [4, 7].

– In a Regular graph(Rn) with n vertices, every vertex has equal degree. Sup-
pose in Rn, every vertices have degree equals to r, then Rn is called r-regular
[4, 7].

– A Cyclic graph(Cn) is basically a 2-regular graph where number of vertices
is equal to number of edges [7, 8]. If there exists only 1 cycle in Cn, then we
call Cn as 1-Cyclic.

– Wheel graph(Wn) is a cyclic graph with an additional vertex which is con-
nected to every other vertices of the cyclic graph Cn−1 [7].

2.2 Overview of the Literature

Offline rainbow coloring has been studied for graphs with limitless variants since
the seminal work of Chartrand et al. in [3]. To acquaint with the state of the art
literature and recent advancements in offline rainbow coloring, see survey [7]. In
our concern, there is no study in the literature for online rainbow coloring in
graphs. However, for the competitive analysis of our proposed online algorithm
LRUC, we must know about the optimal offline strategy for rainbow coloring in
various graphs. Therefore, we present an overview of the seminal contributions
and results in offline rainbow connections of graphs as follows.

Chartrand and et.al. [3] introduced rainbow coloring in graphs. They showed
that rc(Kn) = 1 and rc(Tn) = m. They proved rc(Wn) = 3, for n ≥ 8 and
rc(Cn) = ⌈n

2 ⌉, where n ≥ 4. For the complete bipertite graphKp,q, they obtained
rc(Kp,q) = 2. Caro and et. al. [9] studied the rainbow connections in graph (G)
with minimum degree of G. They obtained rc(G) < 5

6n for δ(G) ≥ 3, where

δ(G) is the minimum degree of G. They proved that rc(G) ≤ min{n ln(δ)
δ (1 +

oδ)(1), n
4ln(δ)+3

δ } for connected graph G with n vertices and minimum degree
δ(G). The hardness of rainbow coloring in graphs was studied in [4,5]. In [4],
authors proved that computing rc(G) for any G is NP-Hard. In [5], it was shown
that obtaining rc(G) ≤ k for any given k is NP-Complete. Chartrand and et. al.
[10] defined k-connectivity of G as rck(G). They obtained rck(Kn) = 2, for any
integer k ≥ 2 if there exists an integer f(k), where f(k) ≤ n. In bipartite graph,
they showed that for every k ≥ 2, there is an integer r such that rcK(Kr,r) = 3.
Krivelevich and Yuster [11] defined rainbow vertex connection rvc(G) for any G.
They proved that rvc(G) < 11n

δ . Schiermeyer [12] addressed the conjecture of
Caro and et. al. [9]. He proved that rc(G) < 3n

4 for δ ≥ 3. Chandran and et. al.
[13] showed that diam(G) ≤ rc(G) ≤ diam(G)+1, where G is an interval graph
and δ ≥ 2. They proved rc(G) = diam(G) if G is an unit interval graph. For cir-
cular arc graph, they obtained the inequality diam(G) ≤ rc(G) ≤ diam(G) + 4.

Online Rainbow Coloring In Graphs 5

Chartrand and et. al. [14] defined k-rainbow coloring as an edge coloring of G
such that for every set A ⊆ k vertices of G, there exists a rainbow tree Tn

in G such that A ⊆ v(T), where v(T) is the number of vertices of Tn. They
defined k-rainbow index rxk(G) as the minimum number of colors required to
k-rainbow color G. They showed that rxk(G) = n− 2 if k = 3 and girth g ≥ 4.
For uni cyclic graph of order n ≥ 3, they obtained rxk(G) = n− 1. Li and Sun
[15] addressed the open question put by Chartrand et. al. in [10] to determine
rck(Kr,r). They showed that rck(Kr,r) = 3, where r ≥ 2k⌈k

2 ⌉ and k ≥ 2. In
[16], Li and Sun studied for computing rc(G), where G is a line graph(Ln) that
consists of triangles. They obtained two upper bounds on rc(G) for Ln in terms
of number of edge disjoint triangles of Ln. Li and et. al. [17] obtained rc(G) ≤ 5
if G is a bridge less graph and diam(G) = 2. They showed that rc(G) ≤ k+2 for
any connected G with diam(G) = 2 and k bridges, where k ≥ 1. Li and et. al.
[18] proved that rc(G) ≤ ⌈n

2 ⌉ for n ≥ 3, where G is a 2-connected graph. Dudek
and et. al. [19] studied rainbow connection of random r-regular graph G(n, r) of
order n, where r ≥ 4. They proved that rc(G) = O(logn).

3 Our Contribution and Results

Online Rainbow Coloring Algorithm. According to our knowledge, there is
no study of an online algorithm for rainbow coloring in the literature. We make
the first attempt to propose an online rainbow coloring algorithm named Least
Recently Used Color(LRUC) for various types of graphs such as line, tree, star,
cyclic, wheel, complete and bipartite. The pseudocode of LRUC algorithm is
presented as follows.

Algorithm 1 LRUC
1: Initially, i=1, j=1, Set of Colors c : {c1}
2: Assign color c1 to the first edge e1.
3: j=j+1.
4: WHILE a new edge ej arrives
5: BEGIN
6: IF ej is adjacent to only one already arrived edge.
7: THEN i=i+1.
8: Assign a new color ci to ej .
9: Insert the new color ci to the set of colors c.
10: END IF.
11: ELSE IF ej is adjacent to atleast two already arrived edges.
12: IF one of the vertex of ej has degree 1.
13: THEN i=i+1.
14: Assign a new color ci to ej .
15: Insert ci to the set of colors c.
16: END IF.
17: ELSE IF both the vertices of ej has degree atleast 2.
18: THEN Assign the least recently used color from the set of colors.
19: END ELSE IF.
20: END ELSE IF.
21: j=j+1
22: END WHILE
23: Return Set of Colors c.
24: END

6 D. Dwibedy et al.

Theorem 1. LRUC is 1-competitive for class A, where A ∈ G and A =
{Ln, Tn, Sn}.

Proof For the competitive analysis of LRUC, we have to first compute the cost
of OPTL, then the cost of LRUC. The ratio between the cost of LRUC and
cost of OPTL gives us the competitive ratio of LRUC for any G, which is the
performance indicator for LRUC. So, first we verify for (Ln) as follows.
Computation of OPTL: In Ln, all edges are adjacent to its previous and next
edge. However, the first edge e1 is adjacent to only its next edge e2 and the last
edge en−1 is adjacent to only its previous edge en−2. This structure of a line
graph sets up only one path between the extreme vertices pair(v1, vn) through
the edges e1, e2, . . . , en−1. So, to satisfy the rainbow coloring property, OPTL
uses distinct colors for all edges from e1 to en−1. Therefore,

rcOPTL(Ln) ≤ n−1. (1)

Computation of LRUC : LRUC assigns a new color to each incoming edge ej
of the line graph(Ln). Because each ej , where 1 ≤ j ≤ n − 1 has atleast one
pendant vertex. Therefore, the minimum number of colors required for Ln is
equal to n− 1. Formally suppose we have n vertices, then the geodesic from v1
to vn contain n− 1 edges where all edges must be colored different.
Therefore, we have

rcLRUC(Ln) ≤ n−1 (2)

From Eqs. (1) and (2), we can have: rcLRUC(Ln)
rcOPTL(Ln)

= n−1
n−1 = 1.

We now verify for (Tn) as follows.

Computation of OPTL: OPTL uses m colors to make a tree rainbow colored,
where m is the size of the tree [3]. Therefore, we have

rcOPTL(Tn) = m (3)

Computation of LRUC : We can use at most m colors to make any graph rain-
bow colored. Suppose we use k colors for rainbow coloring in tree, where k < m.
The edges of the tree are available one by one, so, every newly arrive edge must
have a pendant vertex. Hence, the new edge becomes the part of the unique path
from the pendant vertex to every other known vertices of the tree. Therefore,
we have to use different colors to each incoming edge. If we use any existing
color, then there must be an altenate path from the pendant vertex to atleast
one known vertex. This indicates the existance of a cycle in the tree, which is a
contradiction. So, we must use the number of colors equal to the size of the tree
not less than that. Therefore, we have

rcLRUC(Tn) = m. (4)

From Eqs. (3) and (4), we have rcLRUC(Tn)
rcOPTL(Tn)

= m
m = 1.

We now verify for (Sn) as follows.

Online Rainbow Coloring In Graphs 7

Computation of OPTL: In Sn, all edges are adjacent to each other through
a central vertex. Let the central vertex be v1. So, every distinct (vi, vk) pairs,
where 2 ≤ (i, k) ≤ n have an unique path of length 2 and for each vi, where
2 ≤ i ≤ n, the path between (v1, vi) is of length 1. Therefore, Sn consists of n−1
pendant vertices. OPTL initiates the rainbow coloring by choosing any of the
pendant vertex (let, v2) and explore the paths to all other vi, where, 3 ≤ i ≤ n.
So, OPTL uses 2 colors that satisfies the rainbow coloring property between v2
and every other vi. Subsequently, the next pendant vertex(let, v3) is chosen and
the unknown paths to other vi, where, 4 ≤ i ≤ n are explored. Here, we use an
additional color besides the 2 earlier used colors because if we use an existing
color, then there would be no rainbow path either between v2 and atleast one
of the other vi, where 3 ≤ i ≤ n or between v3 and atleast one of the other vi,
where 2 ≤ i ≤ n (as Sn is a simple graph, we can ignore edges from vi to vi).
Similarly, by considering rest of the n − 3 pendant vertices one by one, we use
an additional n− 3 colors. So, in total we use n− 1 colors, which is equal to the
size of Sn i.e. m.
Therefore, we have

rcOPTL(Sn) = m. (5)

Computation of LRUC : Online Rainbow coloring of Tn and Sn are identical.
We refer to the computation of LRUC for Tn as a proof for online rainbow col-
oring of Sn. Therefore, we have

rcLRUC(Sn) = m. (6)

From Eqs. (5) and (6) we have rcLRUC(Sn)
rcOPTL(Sn)

= m
m = 1. □

Theorem 2. LRUC is (2− 2
n)-competitive for Cn, where Cn is 1-Cyclic

and n ≥ 4.

Proof For the optimal offline rainbow coloring, we refer to the policy of Char-
trand and et al. [3]. OPTL uses ⌈n

2 ⌉ colors for Cn, where n ≥ 4 [3]. Therefore,
we have

rcOPTL(Cn) = ⌈n
2 ⌉ (7)

Computation of LRUC : Suppose, Cn contains 1 cycle of length n with vertices
(v1, v2,vn−1, vn, v1). In the worst case, the edges(ej) arrive one by one in the
following order: e1(v1, v2), e2(v2, v3), . . . , en−1(vn−1, vn). LRUC assigns a new
color to each ej till the arrival of en−1. In any incoming ej , where 2 ≤ j ≤ n−1,
if we use an existing color, then there would not be a rainbow path between
extreme pair of vertices v1 and vn+1 as both are pendant now. So, we bound to
use n−1 colors. The arrival of en(vn, v1) completes the cycle and can be colored
with c1 as v1, vn are adjacent now. Therefore, we have

rcLRUC(Cn) = n−1. (8)

From Eqs. (7) and (8), we have: rcLRUC(Cn)
rcOPTL(Cn)

= n−1
⌈n

2 ⌉ ≤ n−1
(n
2) ≤ 2(n−1)

n ≤ 2n−2
n ≤

2− 2
n . □

8 D. Dwibedy et al.

Theorem 3. LRUC is (n−1
3)-competitive for Wn, where n ≥ 8.

Proof OPTL uses 3 colors for rainbow coloring in Wn, where n ≥ 8 [3]. There-
fore, we have

rcOPTL(Wn) = 3. (9)
Computation of LRUC : In Wn, let v1 be the central vertex connected to each
vi, where i ≤ 2 ≤ n. In the worst case, first the internal n − 1 edges arrive one
by one in any order. The internal n− 1 edges form Sn by connecting v1 to each
vi, where i ≤ 2 ≤ n. So, LRUC uses n− 1 colors to the internal n− 1 edges due
to equation (6). Irrespective of the order of arrival of the external n − 1 edges
connecting distinct (vi, vk), where 2 ≤ (i, k) ≤ n, LRUC uses least recently used
color to each ej , where n ≤ j ≤ 2n− 2. Therefore, we have

rcLRUC(Wn) = n−1. (10)

From Eqs. (9) and (10), we have rcLRUC(Wn)
rcOPTL(Wn)

= n−1
3 . □

Theorem 4. LRUC is (n− 1)-competitive for Kn.

Proof InKn, all distinct pair of vertices(vi, vk) are adjacent to each other, where
1 ≤ (i, k) ≤ n. So, OPTL assigns 1 color to each ej [3]. Therefore, we have

rcOPTL(Kn) = 1 (11)

Computation of LRUC : In the worst case, the first n − 1 edges of Kn arrive
in the order of the line graph(Ln) i.e. e1(v1, v2), e2(v2, v3), . . . , en−1(vn−1, vn).
So, LRUC uses n − 1 different colors to the first n − 1 edges due to equation

(2). For rest n2−3n+2
2 edges, LRUC uses least recently used color at each time

when ej arrives irrespective of its order of arrival because the vertices of each
ej have degree atleast 2 as each ej must adjacent to atleast 2 already arrived

edges, where n ≤ j ≤ n(n−1)
2 . Therefore, we have

rcLRUC(Kn) = n−1 (12)

From Eqs. (11) and (12) we have rcLRUC(Kn)
rcOPTL(Kn)

= n−1
1 = n− 1. □

4 Conclusion

We studied rainbow coloring of graphs in an algorithmic perspective, where the
components of a graph, such as edges available one by one to the algorithm, un-
like the whole graph in the traditional rainbow coloring problem. We proposed
the first deterministic online algorithm named LRUC for the online rainbow
coloring problem. We proved that algorithm LRUC is the optimal online algo-
rithm for some special classes of graphs such as line, tree, and star. We showed

Online Rainbow Coloring In Graphs 9

that algorithm LRUC is (2− 2
n)-competitive for the cyclic graph, which contains

only one cycle and at least four vertices. We obtained the competitive ratios of
n−1
3 and n− 1 for the wheel and complete graph. We observed that the perfor-

mance of algorithm LRUC depends on the order of availability of the edges of
any graph. Due to lack of knowledge about the whole graph, LRUC obtains a
higher rainbow connection number than the optimal offline algorithm(OPTL).
Therefore, it will be interesting to investigate for a better online algorithm that
performs near equal to OPTL. Furthermore, LRUC can be studied for online
rainbow coloring in other non-trivial graphs.

References

1. A. Borodin, R.EI-Yaniv. Online computation and competitive analysis. Cambridge
University Press, Cambridge, 1998.

2. D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28 (2), pp. 202-208, 1985.

3. G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang. Rainbow connection in
graphs. Mathematica Bohemica, 133(1), pp. 85-98, 2008.

4. X. Li, Y. Shi and Y. Sun. Rainbow connections of graphs: A survey. Graphs and
Combinatorics, 29(1), pp. 1-38, 2013.

5. S. Chakraborty, E. Fischer, A. Matsliah and R. Yuster. Hardness and algorithms
for rainbow connection. Journal of Combinatorial Optimization, 21(3), pp. 330-347,
2009.

6. P. Ananth, M. Nasre and K. K. Sarpatwar. Rainbow connectivity: Hardness and
tractability. In FSTTCS, pp. 241-251, 2011.

7. J.A. Bondy and U.S.R. Murthy. Graph Theory. Graduate Texts in Mathematics,
244, Springer, 2008.

8. J. Bang-Jensen, G. Gutin. Diagrphs: Theory, Algorithms and Applications, 2nd,
Springer-Verlag, London, 2009.

9. Y. Caro, A. Lev, Y. Roditty, Z. Tuza, and R. Yuster, On rainbow connection.
Electronics Journal Combinatorics, 15(1), 2008.

10. G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang. The rainbow connectivity
of a graph, pp.75-81, 2009.

11. M. Krivelevich and R. Yuster. The rainbow connection of a graph(at most) recip-
rocal to its minimum degree. Journal of Graph Theory, 63(3), pp. 185-191, 2010.

12. I. Schiermeyer. Rainbow connection in graphs with minimum degree three.
In Journal of Combinatorial Algorithms, 5874, pp. 432-437, LNCS, Springer
Berlin/Heidelberg, 2009.

13. L. Sunil Chandran, A. Das, D. Rajendraprasad and N. M. Varma. Rainbow connec-
tion number and connected dominating sets. Journal of Graph Theory, pp. 206-218,
2012.

14. G. Chartrand, F. Okamoto and P. Zhang. Rainbow trees in graphs and generalized
connectivity. Networks, 55, pp. 360-367, 2010.

15. X. Li and Y. Sun. Note on the Rainbow k-connectivity of Regular Complete Bi-
partite Graphs. arXiv: 1004.2312v1[math.CO], 2010.

16. X. Li and Y. Sun. Upper bounds for the rainbow connection numbers of line graphs.
Journal of Graphs and Combinatorics, 28, pp. 251-263, 2012.

17. H. Li, X. Li and S. Liu. Rainbow connections in Graphs with diameter 2. Arxiv
preprint arXiv:1101.2765v1[math.CO], 2011.

10 D. Dwibedy et al.

18. X. Li, S. Liu, L.S. Chandran, R. Mathew and D. Rajendraprasad. Rainbow con-
nection number and connectivity. Electronics Journal of Combinatorics, 19(1), P20,
2012.

19. A. Dudek, A. Frieze and C.E. Tsourakakis. Rainbow connections of random regular
graphs. SIAM Journal of Discrete and Applied Mathematics, 29(4), pp. 2255-2266,
2015.

