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Abstract 
We investigate the task of disease clustering with the functional annotations of disease 

genes from the Gene Ontology using the biological process aspect. As an unsupervised 
machine learning step, the clustering task places communities of similar diseases 
together based on their closeness to one another using functional annotations of their 
associated genes. The research work and studies for the similarity, relationship, or 
clustering of human diseases using the functional information associated with the disease 
genes are limited. This work builds on and benefits from the advances in gene disease 
association studies; also from the advances in the functional annotations of human 
disease genes from the Gene Ontology. We validated the experimental results by 
comparing the intra-cluster and inter-cluster disease similarity with their semantic 
similarity in the is-a hierarchy in both MeSH and DO disease ontology. The experimental 
results are highly encouraging and show that we can rely on the functional profiles using 
the biological process annotations of disease genes for the study of disease clustering and 
similarity. 

 
 

1. Introduction 
Disease clustering, like disease similarity, is one of the important bioinformatics tasks for 

understanding various disease mechanisms at the molecular and functional levels [1, 2, 4, 5].  Disease 
clustering can be used to analyze the relationship among various diseases, specifically human diseases, 
by placing the diseases that are most similar together in the same group or cluster [2, 4].  Essentially, 
clustering is like classification a machine learning task that works on a fairly large set of data points 
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provided by the application or problem at hand. While classification is supervised, the clustering task 
is an unsupervised learning task that does not require prior labels for the data [2, 4, 5].    
In this paper, we use the functional annotations of disease genes from the Gene Ontology (GO) for 
disease clustering. Specifically, we use the gene ontology functional annotation with biological process 
(bp) terms assigned to the various genes associated with human diseases for disease clustering. Most 
previous work on disease similarity and disease clustering relies on various kinds of disease information 
and attributes like disease symptoms, shared chemicals, disease genes, gene expression profiles, gene 
pathways, protein-protein interactions, and more [2, 4, 5, 6, 7]. In this work, we use both MeSH 
ontology and Disease Ontology (DO) for analyzing the semantic relationships among the diseases [8, 
9, 11]; however, we rely more on the MeSH ontology [8] {note: besides Bioportal we also used MeSH 
disease data from file CTD_diseases which includes parent ID for every disease [21]}. Further, we 
applied the semantic relationship between diseases from MeSH and DO to examine and validate the 
outcomes of the proposed disease clustering method.  The evaluation results are encouraging and prove 
that the functional profiles of diseases from the biological process (bp) aspect of the GO are a good 
attributes for disease similarity and clustering. The main contribution of this work is the investigation 
of the utility and benefit of using the gene ontology functional annotation of human genes in the study 
of disease relationships represented by disease clustering. This kind of work has never been investigated 
extensively to the best of our knowledge.  We examined a fairly good number of evaluation settings for 
disease clustering by utilizing only the disease functional annotations from the bp aspect of the gene 
ontology.  

2. Background and Related Work 
The important and most commonly used clustering algorithms include: Agglomerative Hierarchical 
clustering, k-means clustering and Dbscan [3, 12, 13]. While k-means clustering is categorized in the 
centroid-based methods, Dbscan is categorized in the density-based clustering methods, and the 
Agglomerative Hierarchical clustering is categorized in the hierarchical clustering methods [5].  
In [10], Godwin and Ugwoke (2018) applied clustering in the healthcare field to identify groups of 
patients with diabetes who have similar profiles(e.g., age and gender) as well as common clinical 
histories [10]. Bello et. al. (2018) discussed the importance of the adoption of Disease Ontology which 
will help in unifying disease annotations across different species through the collaborative effort of 
aligning disease terms across different projects [22]. They emphasize that the collaboration between the 
Mouse Genome Database, the Rat Genome Database, and the Disease Ontology project demonstrates 
the usability of Disease Ontology across different model organisms within the database community 
[22].  
In [5], Karim et. al (2021) presented an extensive study of clustering and cluster analysis that is based 
on representation learning for helping bioinformatics research. They reviewed most of the deep-
learning-based clustering approaches. Their evaluation was conducted with three bioinformatics tasks: 
bioimaging, cancer genomics and biomedical text mining. [5]. 
The Dbscan clustering is one of the most reliable clustering techniques for large data sets with different 
sizes and arbitrary shapes. The main focus of the algorithm is on finding the densest areas and 
recursively extending them to find dense arbitrarily shaped clusters [5, 25]. Both Anand and Kumar 
(2018), as well as Karim et. al. (2021), present fairly comprehensive studies and surveys about the 
various clustering algorithms and their applications in various fields [5, 25]. 
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3. Methods and Techniques 
As an unsupervised machine learning task, the clustering task is the process of gathering similar data 
points into a predefined number of bins and each bin is called a cluster. A clustering algorithm, e.g., 
Dbscan [12, 13] or Hierarchical clustering, tries to learn some hidden patterns that can be used to group 
similar items together in a meaningful way. In this work, we utilize the functional annotations of disease 
genes for disease clustering. The Gene Ontology is composed of three aspects: biological process bp, 
molecular function mf, and cellular component cc. The bp aspect is a taxonomy of all bp functional 
terms that can be assigned for various gene products in various organisms [16, 17, 23].  Each human 
disease gene is annotated with one or more functional terms from the bp aspect. The database of all 
gene-bp functional assignments is the Gene Ontology Annotation (GOA) [18] which includes all GO-
gene annotations and considered the most comprehensive dataset for gene ontology annotations 
(including bp annotations) of human genes [16 – 18].  Each disease is represented as a vector of bp 
terms and the clustering method assigns diseases to clusters based on their bp profiles from their 
associated genes. That is, diseases that are annotated with similar sets of bp functions will be assigned 
(or placed) in the same cluster. Two diseases 𝑑!	and 𝑑" do not need to be associated with the same 
disease genes in order to have similar sets of bp terms (note: we use the words ‘bp term’ and ‘bp 
function’ interchangeably for the same meaning to indicate one node or term in the bp taxonomy}. For 
example, for some disease 𝑑! let the set 𝑔(𝑑!) be the set of all genes associated with the disease 𝑑!: 
𝑔(𝑑!) = {𝑔#, 𝑔$, 𝑔%} and similarly 𝑔(𝑑") = {𝑔&, 𝑔'}; therefore, here the two diseases 𝑑! and 𝑑" have 
completely different genes associated with them. Now suppose the set 𝑝(𝑑!) be the set of bp terms 
associated with disease 𝑑!; and also let: 𝑝(𝑑!) = {𝑡#, 𝑡$, 𝑡%, 𝑡&, 𝑡'} and 𝑝(𝑑") = {𝑡$, 𝑡&, 𝑡', 𝑡(}.  As we 
can see, the two diseases 𝑑!and 𝑑" have very similar sets of bp terms (the three bp terms 𝑡$, 𝑡&, 𝑡' are 
in common) even though their associated genes are completely different .  
Once all the disease pb term assignments are constructed into disease vectors we use the Dbscan  
clustering algorithm [12 – 14] to cluster the diseases based on their biological process functional 
annotations. The Density-Based Spatial Clustering of Applications with Noise (Dbscan) is the 
clustering algorithm we employ in this work. Dbscan  is one of the most commonly used and well-
known clustering algorithms for similar tasks like these. Based on the distance measure between the 
data points, Dbscan  puts together (in the same cluster) all data points that are close to each other. We 
used disease information and disease data from the following sources: - OMIM for disease information 
in OMIM and morbidmap [19];  DO (The Disease Ontology) [11, 20] for the hierarchical relationship 
between diseases; and for MeSH disease info we used the MeSH db from BioPortal [8, 9];  we used the 
GOA_human for the gene ontology bp functional annotations of human disease genes [18].  Finally, 
we used the CTD database [21] for disease data, gene-disease associations, and hierarchical relationships 
(parent-child) between MeSH diseases [21]. For example, from the file CTD_diseases: we extracted 
parent diseases for each disease with MeSH disease ID which also has MeSH Parent IDs, as follows: 
 
 
 
 
 
 
 
 

Disease Name Disease ID Parent IDs 

Alzheimer Disease MESH:D000544 MESH:D003704 , 
MESH:D024801 

Explained: This records shows that the Alzheimer disease (disease Id in MESH: D000455) 
has two parents: (1) Dementia MESH:D003704 and (2) Tauopathies MESH:D024801 
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     And these two diseases (Dementia  and Tauopathies) has the following parent nodes: 
Disease Name Disease ID Parent IDs 

Dementia MESH:D003704 MESH:D001927 , MESH:D019965 

Tauopathies MESH:D024801 MESH:D019636 
  
For each disease 𝑑) we obtained from morbidmap [19] all the genes associated with 𝑑) (disease-genes); 
also this information can be verified from the CTD database [21].  Next, we used the GOA_human data 
[18] (which includes 564,813 GO annotations for all human genes) from the Gene Ontology to extract 
all biological process (bp) function terms associated with each gene [18]. Then, we constructed the 
disease vector for each disease from the bp function terms of its genes.  Let 𝑣) be the vector for disease 
𝑑) such that 𝑣)* is the jth component of the vector which represents bp term 𝑝* such that 𝑣)*=1 if disease 
𝑑) is annotated with 𝑝* and 0 otherwise: 

𝑣)* =	 -
1					𝑖𝑓	𝑑) 	𝑖𝑠	𝑎𝑛𝑛𝑜𝑡𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑡𝑒𝑟𝑚	𝑝𝑗
0																																															𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

For example: let 𝑣+ = {1, 0, 1, 1, 0	, 1} be the disease vector for some disease 𝑑+ and this disease is 
annotated with the bp terms  𝑝#, 𝑝%, 𝑝&	and		𝑝(. If a disease is annotated with the bp term 𝑝) then it 
will be also annotated with all the ancestors of 𝑝) in the biological process taxonomy to the root term 
(the root term for the bp taxonomy is biological_process and its GO Id is GO:0008150).  
We constructed a superset of bp terms to be used as feature space for the disease bp vectors as follows: 

─ s1: From OMIM morbidmap we selected 1000 diseases from disease marked with (3) to 
indicate molecular basis known. Notice that from the total of 8,218 diseases in the OMIM 
morbidmap, there are 7,302 diseases marked as ‘ # 3 - The molecular basis for the 
disorder is known; a mutation has been found in the gene.’; (all the 8,218 diseases are 
listed with their associated genes). Furthermore, we found in morbidmap a total of 5,962 
unique (human) genes.  

─ s2: Then we obtained all genes associated with each disease in step s1; we call this set dgss 
(disease genes superset).  

─ s3: From the GOA_human we obtained all bp terms annotated for all disease-genes in the set 
dgss (from step s2 above); we call this set pbss (bp superset).    

─ s4: We removed from bpss every bp term that is annotating ≥90% or ≤ 10% of the dgss set. 
 

The resulting pb terms superset bpss is then applied as the feature space for disease feature vectors 𝑣). 

4. Results and Discussion  
We conducted several evaluations to test our disease clustering approach with different numbers of 
diseases and various number of clusters in multiple experimental settings. Table 1 contains 100 diseases 
selected for one of the experiments from MeSH and also the morbidmap in OMIM[19]. 
Evaluation 1: The first three experiments e1 to e3 were conducted with 20, 30 and 50 diseases 
respectively. Then each experiment is repeated two times with two settings by changing k (k : the 
number of clusters) as k=2 and k=3; as follows:  
Experiment e1: we randomly selected 20 diseases from morbidmap data and with two clustering’s k=2, 

k=3 and this resulted in experiments e1a and e1b; as shown: 
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Experiment # of diseases k  (# of clusters) 
e1a 20 2 
e1b 3 

Experiment e2: Similarly, experiment e2 was done with 30 diseases and repeated two times by 
changing number of clusters as follows: 

Experiment # of diseases k  (# of clusters) 
e2a 30 2 
e2b 3 

Experiment e3: like the previous two experiments, we selected 50 diseases for this experiment with 
two different number of clusters as follows: 

Experiment # of diseases k  (# of clusters) 
e3a 50 2 
e3b 3 

 
For these experiments (e1 – e3) we evaluated the clustering quality by comparing the path length 
between two disease nodes in the MeSH and DO disease ontology [11, 20] using edge count. {note: we 
used the BioPortal for shortest path length and edge count for both MeSH and DO; we also utilized the 
Parent ID in the CTD database [21] file CTD_diseases which includes every is-a relationship between 
a MeSH disease and its parent disease}.  For example, in Figure 1, the path length between the two 
disease nodes {heart disease} and {double outlet right ventricle} is 2 (by counting the edges between 
these two nodes). If there are more than one path between two nodes in the ontology, we select the 
shortest path. For example, the two disease nodes {disease} and {double outlet right ventricle}in Figure 
1 have four different paths between them with the shortest path length is being 3 (the other three paths 
are of length 4 and 5 using edge counting). In another example, in Figure 2 (a portion of the MeSH 
ontology); the path length (PL) between Alzheimer Disease and Nervous System Diseases is 3 while the 
PL between Alzheimer Disease and Dementia is 1 (which indicates that Alzheimer Disease and 
Dementia are highly similar). An ontology, such as DO disease ontology or MESH, is a manifestation 
of the semantic relationship (is_a relationship) between the nodes of the ontology. For example, as 
shown in Figure 8, in the DO ontology, the disease Cataract 20 multiple types is_a Cataract.    
 In general, the shortest path between any two term nodes in a given ontology (a Directed-Acyclic Graph 
DAG) has been used as a measure of similarity (or relatedness) of the two terms [15]. Given that the 
path length can be a measure of relatedness between diseases, we computed the shortest path length 
between every disease pairs within one cluster (intra-cluster) and computed the average of all pairs in 
the cluster.  Then we computed the shortest path length between every disease pair with two diseases 
from two different clusters (inter-cluster distance).  The results are shown in Table_2 for the first three 
experiments e1 – e3 and illustrated in Figure 3.  
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Figure 1: portion of the DO for disease name double outlet right ventricle DOID:6406 {OMIM:217095, 

MESH:D004310 }    
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Figure 2: portion of the MESH ontology showing the nodes from Alzheimer Disease to the root. 

 

 
 

Experiment  
Intra-cluster distance {path length: 

# of edges in MESH taxonomy} 
Inter-cluster distance {path length: # 

of edges in MESH taxonomy} 
e1 4.85 6.35 
e2 3.41 4.82 
e3 3.65 5.05 

Table 2: The mean value for the shortest path length between disease nodes within a cluster and between 
clusters. 
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Figure 3: This figure shows the difference between average path length between 

disease pairs within one cluster (intra-cluster) versus disease pairs from 
two clusters (inter-cluster). 

 
 
 

 
Figure 4: This figure shows the average path length between disease pairs within 

one cluster (intra-cluster) versus disease pairs from two clusters (inter-
cluster) for the second evaluation with 100 – 200 diseases and two 
clusters (k=2).  
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Hypomagnesemia 5, renal, with ocular involvement, 248190  {Psoriasis susceptibility 5}  Reducing body myopathy, X-linked 1b, with late childhood 

or adult onset, 300718  

Cockayne syndrome, type B, 133540  Cardiomyopathy, hypertrophic, 17, 613873  Hemorrhagic diathesis due to antithrombin Pittsburgh, 
613490  

3-methylglutaconic aciduria, type V, 610198  ?Dyskeratosis congenita, autosomal recessive 7, 616553  Intellectual developmental disorder, autosomal dominant 
51, 617788  

Hair, curly  Thyroid dyshormonogenesis 3, 274700  Spinocerebellar ataxia 25, 608703  
Pseudohypoaldosteronism, type IB3, autosomal recessive, 
620126  Adams-Oliver syndrome 5, 616028  Deafness, autosomal recessive 12, 601386  

{Hypercalciuria, absorptive, susceptibility to}, 143870  Langer mesomelic dysplasia, 249700  Emery-Dreifuss muscular dystrophy 1, X-linked, 310300  
Norum disease, 245900  Myopathy, distal, with anterior tibial onset, 606768  {Synovitis, chronic, susceptibility to}  
Ehlers-Danlos syndrome, arthrochalasia type, 1, 130060  ?COACH syndrome 3, 619113  {Macular degeneration, age-related, 2}, 153800  

{Bone mineral density QTL 12, osteoporosis}, 612560  Muscular dystrophy-dystroglycanopathy (congenital with 
impaired intellectual development), type B, 6, 608840  Keratoderma, palmoplantar, punctate type IB  

Kilquist syndrome, 619080  ?Megaloblastic anemia, folate-responsive, 601775  Bartter syndrome, type 4b, digenic, 613090  

{Diabetes, type 2}, 125853  ?Neurodegeneration with brain iron accumulation 7, 
617916  Alazami-Yuan syndrome, 617126  

Gallbladder disease 3  Ciliary dyskinesia, primary, 20, 615067  Cardiomyopathy, hypertrophic 6, 600858  
Spastic paraplegia 14, autosomal recessive  Aminoacylase 1 deficiency, 609924  Seizures, scoliosis, and macrocephaly syndrome, 616682  
Cardiomyopathy, dilated, 1MM, 615396  Bardet-Biedl syndrome 8, 615985  {Autism susceptibility 4}  
?Acne inversa, familial, 3, 613737  Febrile seizures, familial, 5  Holocarboxylase synthetase deficiency, 253270  
Autoimmune lymphoproliferative syndrome, type III, 
615559  

Congenital myopathy with excess of muscle spindles, 
218040  Orofacial cleft 8, 618149  

Dystonia 4, torsion, autosomal dominant, 128101  Cone dystrophy 4, 613093  Stuttering, familial persistent, 2  

?SERKAL syndrome, 611812  Acromelic frontonasal dysostosis, 603671  Mitochondrial DNA depletion syndrome 4B (MNGIE type), 
613662  

Microphthalmia, isolated 6, 613517  Cervical cancer, somatic, 603956  {Prostate cancer, familial, susceptibility to}, 176807  
Spinocerebellar ataxia 5, 600224  ?Caudal duplication anomaly, 607864  van Buchem disease, type 2, 607636  

Hypercalcemia, infantile, 1, 143880  Noonan syndrome 10, 616564  {Efavirenz central nervous system toxicity, susceptibility to}, 
614546  

Spinal muscular atrophy, infantile, James type, 619042  ?Lipodystrophy, congenital generalized, type 3, 612526  Cone dystrophy-3, 602093  
Tooth agenesis, selective, X-linked 1, 313500  [Mean platelet volume QTL3]  [Skin/hair/eye pigmentation 1, blue/nonblue eyes], 227220  
[Blood group, Kell], 110900  {Schizophrenia}, 181500  Thyroid carcinoma, papillary, with papillary renal neoplasia  
Keratolytic winter erythema, 148370  Spinal muscular atrophy-2, 253550  Spastic paraplegia 10, autosomal dominant, 604187  
?Bleeding disorder, platelet-type, 22, 618462  [Uric acid concentration, serum, QTL5]  Pseudoxanthoma elasticum, 264800  

Macular dystrophy, vitelliform, 3, 608161  ?Hypertrichosis, congenital generalized, with gingival 
hyperplasia, 135400  {Dermatitis, atopic, susceptibility to, 3}  

{Asthma, susceptibility to, 2}, 608584  Nystagmus 7, congenital, autosomal dominant  Verheij syndrome, 615583  
{Hemolytic uremic syndrome, atypical, susceptibility to, 2}, 
612922  {Low renin hypertension, susceptibility to}  Leukemia, acute myeloid, 601626  

Biliary cirrhosis, primary, 5  Gustavson syndrome  Pulmonary venoocclusive disease 2, 234810  
Heart-hand syndrome, Slovenian type, 610140  Lymphatic malformation 2  Cystinuria, 220100  
Olmsted syndrome 2, 619208  Developmental and epileptic encephalopathy 16, 615338  Cleidocranial dysplasia 2, 620099  
Gastric cancer, somatic, 613659  ?Moebius syndrome   

Dentici-Novelli neurodevelopmental syndrome, 619877  Brooke-Spiegler syndrome, 605041   

Table 1: Sample of 100 diseases selected from the morbid map file. 

  

Evaluation 2: Then, after the first three experiments (e1 – e3) in Evaluation 1, we increased the number 
of diseases. Therefore, we conducted another group of experiments with number of diseases 100, 150 
and 200 with experiments e4, e5 and e6 respectively and we kept k=2 clusters; the results are shown in 
Figure 4.  
Evaluation 3:  in this evaluation, we selected two groups 𝑔#and 𝑔$ of diseases based on the shortest path 
length between them in the DO ontology. Each group consists of 20 diseases and n=40 (n: total number 
of diseases). The shortest path length between diseases in each group ranges between 1 and 4: 

𝑔# : 20 diseases; shortest path length between them: 1 – 4; each disease 𝑑) is labeled with 𝑙) = 1  
𝑔$ : 20 diseases; shortest path length between them: 1 – 4; each disease 𝑑* is labeled with 𝑙* = 2  
Moreover, the shortest path length between any disease pair from the two groups ranges between 
6 – 8; as shown in Figure 5. 
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Figure 5: The shortest path length between any two nodes within 𝑔! (or within 𝑔") ranges 

between 1 – 4 while the shortest path length between any two disease from 𝑔! 
and 𝑔" ranges between 6 – 8. 

 
Define 𝑐) to be the cluster for disease 𝑑) produced by the proposed clustering method. Then, for a given 
disease 𝑑, if 𝑐, = 𝑙, then the clustering method placed 𝑑, in its correct group. With this, we can use 
the clustering accuracy to examine and validate the proposed clustering method as follows:.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∑ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝑑))-
).# , where  𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔	(𝑑)) = -1									𝑖𝑓	𝑐) = 𝑙)

0						𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

This setting is repeated ten times with each repetition conducted with different diseases in the two 
groups. This evaluation therefore is done with 400 diseases in ten rounds.  The accuracy results of the 
ten rounds are sorted ascending accuracy and are illustrated in Figure 6. As shown in Figure 6, the 
accuracy ranges from 0.70 to 0.95 with average accuracy is 0.825 indicating that the clustering method 
was able to place (on average) 33 out of the 40 diseases in their correct groups.   

 
Figure 6: The accuracy of clustering assignment compared with the truth label 𝑙) for each 

disease 𝑑). 
 
Evaluation 4: In the last evaluation, we conducted experiments with 20 diseases each and k=2; this is 
repeated 20 times with a total of 400 diseases in 20 disease clustering experiments.  In this evaluation, 
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we selected diseases that do not share any genes (no shared genes in each 20 diseases experiment). We 
wanted to verify the validity of the clustering based solely on the bp functional profiles and 
independently from the genes associated with diseases. The results are shown in Figure_7. These results 
demonstrate clearly that there are noticeable differences in the average path length of intra-cluster 
versus inter-cluster disease pairs in all 20 experiments. 

 
Figure 7: The average shortest path length of 20 clustering experiments each with 20 

diseases and k=2. Each experiment includes 20 diseases that have no shared 
genes. 

 
 
Discussion: We expect that if the clustering algorithm places two disease 𝑑) and 𝑑* in the same cluster 
then 𝑑) and 𝑑* are relatively more similar to each other than any two diseases taken from two clusters. 
Moreover, if the shortest path length 𝑃𝐿(𝑑) , 𝑑*) between diseases 𝑑) 	and	𝑑* in a given disease ontology 
is less that the 𝑃𝐿(𝑑! , 𝑑") then the disease pair 𝑑) , 𝑑* is more semantically similar than the pair 𝑑! , 𝑑". 
In the last evaluation, for example, disease pairs (𝑑) , 𝑑*) in the same cluster (i.e. the clustering algorithm 
places both 𝑑) and 𝑑* in the same cluster) have average shortest path length between them =2.49; on 
the other hand, disease pairs (𝑑/, 𝑑,) from two clusters (i.e. 𝑑/ in one cluster and 𝑑, in the other cluster) 
on average have shortest path length = 3.17;  as follows: 

Cluster No. of diseases (# of disease pairs) Avg. shortest PL  

Cluster 1 12 (66 pairs) 2.44 
2.49 (avg intra-cluster PL) 

Cluster 2 8 (28 pairs) 2.62 

Inter-cluster 20 (96 pairs) 3.17 3.17 (avg inter-cluster PL) 

This indicates that the clustering algorithm groups the semantically similar diseases together reliably 
according to the disease ontology.  
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5. Conclusions  
We presented the method and results of disease clustering using the functional annotation of disease 
genes from the biological process aspect in the Gene Ontology.  Disease clustering, like disease 
similarity, is an important task for understanding the various disease mechanisms and aspects at various 
molecular and functional levels. Also, disease similarity outcomes are valuable for disease relationship 
analysis, gene disease association, and drug repurposing studies. We conducted experiments with 
various number of diseases and clusters and with validation using both MeSH and the DO ontology. 
The results are highly encouraging. The proposed method groups similar diseases together based on 
their semantic similarity in the is-a hierarchy from MeSH or DO ontology by using the gene ontology 
bp annotations which is a completely different and independent information resource than both MeSH 
and DO ontology. The work in this paper overall shows that it is fairly reliable to use the gene ontology 
functional annotation of disease genes for disease clustering.  
 
 

 
            Figure 8: Example of two diseases with an 𝑖𝑠_𝑎 relationship (parent-child relationship) in 

the DO ontology. 
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